Blue $TiO_2$ nanotube arrays as semimetallic materials with enhanced photoelectrochemical activity towards water splitting

Blue $TiO_2$ nanotube arrays as semimetallic materials with enhanced photoelectrochemical activity towards water splitting

In the past years there has been a great interest in self-doped $TiO_2$nanotubes (blue $TiO_2$ nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue $TiO_2$ nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue $TiO_2$ nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed $TiO_2$ nanotubes. The annealing temperature of undoped $TiO_2$ nanotubes was tuned before cathodic polarization, revealing that annealing at 500 °C improved the photoresponse of the nanotubes significantly. Further optimization of the blue $TiO_2$ nanotubes was achieved by adjusting the cathodic polarization parameters. Blue $TiO_2$ nanotubes obtained at the potential of –1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm–2) compared to the undoped $TiO_2$ nanotube arrays (0.19 mA cm–2). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.

___

  • 1. Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C Photochemistry Reviews 2010; 11 (4): 179-209. doi: 10.1016/j.jphotochemrev.2011.02.003
  • 2. Alfaifi BY, Ullah H, Alfaifi S, Tahir AA, Mallick TK. Photoelectrochemical solar water splitting: from basic principles to advanced devices. Veruscript Functional Nanomaterials 2018; 2: BDJOC3. doi: 10.22261/fnan.bdjoc3
  • 3. Wang X, Maeda K, Thomas A, Takanabe K, Xin G et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials 2009; 8 (1): 76-80. doi: 10.1038/nmat2317
  • 4. Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges. The Journal of Physical Chemistry Letters 2010; 1 (18): 2655-2661. doi: 10.1021/jz1007966
  • 5. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M et al. Nano-photocatalytic materials: possibilities and challenges. Advanced Materials 2012; 24 (2): 229-251. doi: 10.1002/adma.201102752
  • 6. Zhang H, Chen G, Bahnemann DW. Photoelectrocatalytic materials for environmental applications. Journal of Materials Chemistry 2009; 19 (29): 5089-5121. doi: 10.1039/b821991e
  • 7. Zhao X, Guo L, Zhang B, Liu H, Qu J. Photoelectrocatalytic oxidation of CuII-EDTA at the $TiO_2$ electrode and simultaneous recovery of CuII by electrodeposition. Environmental Science & Technology 2013; 47 (9): 4480-4488. doi: 10.1021/es3046982
  • 8. Liu M, De Leon Snapp N, Park H. Water photolysis with a cross-linked titanium dioxide nanowire anode. Chemical Science 2011; 2 (1): 80-87. doi: 10.1039/c0sc00321b
  • 9. Hwang YJ, Boukai A, Yang P. High density n-Si/ n-$TiO_2$ core/shell nanowire arrays with enhanced. Nano Letters 2009; 9 (100): 410-415. doi: 10.1021/nl8032763
  • 10. Lin Y, Zhou S, Liu X, Sheehan S, Wang D. $TiO_2 /TiSi_2$ heterostructures for high-efficiency photoelectrochemical $H_2O$ splitting. Journal of the American Chemical Society 2009; 131 (8): 2772-2773. doi: 10.1021/ja808426h
  • 11. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on $TiO_2$ and other semiconductors. Angewandte Chemie International Edition 2013; 52 (29): 7372-7408. doi: 10.1002/anie.201207199
  • 12. Wang YQ, Gu L, Guo YG, Li H, He XQ et al. Rutile-$TiO_2$ nanocoating for a high-rate $Li_4 Ti_5O_{12}$ anode of a lithium-ion battery. Journal of the American Chemical Society 2012; 134 (18): 7874-7879. doi: 10.1021/ja301266w
  • 13. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Enhanced photocleavage of water using titania nanotube arrays. Nano Letters 2005; 5 (1): 191-195. doi: 10.1021/nl048301k
  • 14. Zhang Z, Hossain MF, Takahashi T. Photoelectrochemical water splitting on highly smooth and ordered $TiO_2$ nanotube arrays for hydrogen generation. International Journal of Hydrogen Energy 2010; 35 (16): 8528-8535. doi: 10.1016/j.ijhydene.2010.03.032
  • 15. Sun Y, Yan K, Wang G, Guo W, Ma T. Effect of annealing temperature on the hydrogen production of $TiO_2$ nanotube arrays in a twocompartment photoelectrochemical cell. The Journal of Physical Chemistry C 2011; 115 (26): 12844-12849. doi: 10.1021/jp1116118
  • 16. Grimes C, Mor GK. $TiO_2$ Nanotube Arrays: Synthesis Properties, and Applications. Berlin, Germany: Springer Verlag, 2009.
  • 17. Ni M, Leung MKH, Leung DYC, Sumathy K. A review and recent developments in photocatalytic water-splitting using $TiO_2$ for hydrogen production. Renewable and Sustainable Energy Reviews 2007; 11 (3): 401-425. doi: 10.1016/j.rser.2005.01.009
  • 18. Li Y, Zhang JZ. Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser & Photonics Reviews 2010; 4 (4): 517-528. doi: 10.1002/lpor.200910025
  • 19. Allam NK, Grimes CA. Room temperature one-step polyol synthesis of anatase $TiO_2$ nanotube arrays: photoelectrochemical properties. Langmuir 2009; 25 (13): 7234-7240. doi: 10.1021/la9012747
  • 20. Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on $TiO_2$ nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Letters 2013; 13 (1): 14-20. doi: 10.1021/nl3029202
  • 21. Park JH, Park OO, Kim S. Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide. Applied Physics Letters 2006; 89 (16): 3-6. doi: 10.1063/1.2357878
  • 22. Bakranov N, Zhabaikhanov A, Kudaibergenov S, Ibraev N. Decoration of wide bandgap semiconducting materials for enhancing photoelectrochemical efficiency of PEC systems. Journal of Physics: Conference Series 2018; 987 (1): 012028-012036. doi: 10.1088/1742- 6596/987/1/012028
  • 23. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chemical Reviews 1995; 95 (1): 69-96. doi: 10.1021/cr00033a004
  • 24. Choi W, Termin A, Hoffmann MR. Effects of metal‐ion dopants on the photocatalytic reactivity of quantum‐sized $TiO_2$ particles. Angewandte Chemie International Edition 1994; 33 (10): 1091-1092. doi: 10.1002/anie.199410911
  • 25. Peighambardoust NS, Nasirpouri F. Manipulating morphology, pore geometry and ordering degree of $TiO_2$ nanotube arrays by anodic oxidation. Surface and Coatings Technology 2013; 235: 727-734. doi: 10.1016/j.surfcoat.2013.08.058
  • 26. Peighambardoust NS, Khameneh Asl S, Mohammadpour R, Asl SK. Band-gap narrowing and electrochemical properties in N-doped and reduced anodic $TiO_2$ nanotube arrays. Electrochimica Acta 2018; 270: 245-255. doi: 10.1016/j.electacta.2018.03.091
  • 27. Park JH, Kim S, Bard AJ. Novel carbon-doped $TiO_2$ nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters 2006; 6 (1): 24-28. doi: 10.1021/nl051807y
  • 28. Fitzmorris RC, Yang X, Zhang JZ, Wolcott A, Wang G et al. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Letters 2009; 9 (6): 2331-2336. doi: 10.1021/nl900772q
  • 29. Hensel J, Wang G, Li Y, Zhang JZ. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of $TiO_2$ nanostructures for photoelectrochemical solar hydrogen generation. Nano Letters 2010; 10 (2): 478-483. doi: 10.1021/nl903217w
  • 30. Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA. Vertically oriented Ti-Fe-O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Letters 2007; 7 (8): 2356-2364. doi: 10.1021/nl0710046
  • 31. Samiolo L, Valigi M, Gazzoli D, Amadelli R. Photo-electro catalytic oxidation of aromatic alcohols on visible light-absorbing nitrogendoped $TiO_2$. Electrochimica Acta 2010; 55 (26): 7788-7795. doi: 10.1016/j.electacta.2009.09.044
  • 32. Ohno T, Murakami N, Tsubota T, Nishimura H. Development of metal cation compound-loaded S-doped $TiO_2$ photocatalysts having a rutile phase under visible light. Applied Catalysis A: General 2008; 349 (1-2): 70-75. doi: 10.1016/j.apcata.2008.07.016
  • 33. Neville EM, Ziegler J, Don Macelroy JM, Ravindranathan Thampi K, Sullivan JA. Serendipity following attempts to prepare C-doped rutile $TiO_2$. Applied Catalysis A: General 2014; 470: 434-441. doi: 10.1016/j.apcata.2013.11.024
  • 34. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chemical Reviews 2007; 107 (7): 2891-2959. doi: 10.1021/cr0500535
  • 35. Inturi SNR, Boningari T, Suidan M, Smirniotis PG. Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped $TiO_2$. Applied Catalysis B: Environmental 2014; 144 (2014): 333-342. doi: 10.1016/j.apcatb.2013.07.032
  • 36. Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized $TiO_2$ : Correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry 1994; 98 (51): 13669-13679. doi: 10.1021/j100102a038
  • 37. Asahi R, Morikawa T, Irie H, Ohwaki T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews 2014; 114 (19): 9824-9852. doi: 10.1021/cr5000738
  • 38. Xing M, Zhang J, Chen F, Tian B. An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chemical Communications 2011; 47 (17): 4947-4949. doi: 10.1002/anie.201206375
  • 39. Hu YH. A highly efficient photocatalyst-hydrogenated black $TiO_2$ for the photocatalytic splitting of water. Angewandte Chemie International Edition 2012; 51 (50): 12410-12412.
  • 40. Kim C, Kim S, Lee J, Kim J, Yoon J. Capacitive and oxidant generating properties of black-colored $TiO_2$ nanotube array fabricated by electrochemical self-doping. ACS Applied Materials & Interfaces 2015; 7 (14): 7486-7491. doi: 10.1021/acsami.5b00123
  • 41. Zuo F, Wang L, Wu T, Zhang Z, Borchardt D et al. Self-doped $Ti^{3+}$ enhanced photocatalyst for hydrogen production under visible light. Journal of the American Chemical Society 2010; 132 (34): 11856-11857. doi: 10.1021/ja103843d
  • 42. Zhou X, Häublein V, Liu N, Nguyen NT, Zolnhofer EM et al. $TiO_2$ nanotubes: nitrogen-ion implantation at low dose provides noblemetal-free photocatalytic H2 -evolution activity. Angewandte Chemie International Edition 2016; 55 (11): 3763-3767. doi: 10.1002/ anie.201511580
  • 43. Xu Y, Ahmed R, Klein D, Cap S, Freedy K et al. Improving photo-oxidation activity of water by introducing Ti3+ in self-ordered $TiO_2$nanotube arrays treated with Ar/NH3 . Journal of Power Sources 2019; 414 (2018): 242-249. doi: 10.1016/j.jpowsour.2018.12.083
  • 44. Berger T, Lana-Villarreal T, Monllor-Satoca D, Gómez R. Charge transfer reductive doping of nanostructured $TiO_2$ thin films as a way to improve their photoelectrocatalytic performance. Electrochemistry Communications 2006; 8 (11): 1713-1718. doi: 10.1016/j. elecom.2006.08.006
  • 45. Wang G, Wang H, Ling Y, Tang Y, Yang X et al. Hydrogen-treated $TiO_2$ nanowire arrays for photoelectrochemical water splitting gongming. Nano Letters 2011; 11: 3026-3033. doi: 10.1021/nl201766h
  • 46. Chen X, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nonocrystals. Science 2011; 331: 746-751. doi: 10.1126/science.1200448
  • 47. Macak JM, Gong BG, Hueppe M, Schmuki P. Filling of $TiO_2$ nanotubes by self-doping and electrodeposition. Advanced Materials 2007; 19 (19): 3027-3031. doi: 10.1002/adma.200602549
  • 48. Chang X, Thind SS, Chen A. Electrocatalytic enhancement of salicylic acid oxidation at electrochemically reduced $TiO_2$ nanotubes. ACS Catalysis 2014; 4 (8): 2616-2622. doi: 10.1021/cs500487a
  • 49. Gillaspie DT, Tenent RC, Dillon AC. Metal-oxide films for electrochromic applications: Present technology and future directions. Journal of Materials Chemistry 2010; 20 (43): 9585-9592. doi: 10.1039/c0jm00604a
  • 50. Sakai N, Fujishima A, Watanabe T, Hashimoto K. Highly hydrophilic surfaces of cathodically polarized amorphous TiO2 electrodes. Journal of the Electrochemical Society 2002; 148 (10): E395-E398. doi: 10.1149/1.1399279
  • 51. Regonini D, Jaroenworaluck A, Stevens R, Bowen CR. Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surface and Interface Analysis 2010; 42 (3): 139-144. doi: 10.1002/sia.3183
  • 52. Jiang X, Zhang Y, Jiang J, Rong Y, Wang Y et al. Characterization of oxygen vacancy associates within hydrogenated $TiO_2$: a positron annihilation study. The Journal of Physical Chemistry C 2012; 116 (42): 22619-22624. doi: 10.1021/jp307573c
  • 53. Peighambardoust NS, Asl SK, Mohammadpour R, Asl SK. Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional $TiO_2$ nanotube array electrodes. Solar Energy 2019; 184: 115-126. doi: 10.1016/j.solener.2019.03.073
  • 54. Zhou H, Zhang Y. Electrochemically self-doped $TiO_2$ nanotube arrays for supercapacitors. Journal of Physical Chemistry C 2014; 118 (11): 5626-5636. doi: 10.1021/jp4082883
  • 55. Liao W, Yang J, Zhou H, Murugananthan M, Zhang Y. Electrochemically self-doped $TiO_2$ nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim Acta 2014; 136: 310-317. doi: 10.1016/j.electacta.2014.05.091
  • 56. Tsuchiya H, Macak JM, Ghicov A, Räder AS, Taveira L et al. Characterization of electronic properties of $TiO_2$ nanotube films. Corrosion Science 2007; 49 (1): 203-210. doi: 10.1016/j.corsci.2006.05.009
  • 57. Qin W, Lu S, Wu X, Wang S. Dye-sensitized solar cell based on N-doped $TiO_2$ electrodes prepared on titanium. International Journal of Electrochemical Science 2013; 8 (6): 7984-7990.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Catalytic activity of novel thermoplastic/cellulose-Au nanocomposites prepared by cryomilling

Joanna KWICZAK YİĞİTBAŞI

Zahid Hussain LAGHARİ, Syed Tufail Hussain SHERAZİ, Hamide Filiz AYYİLDİZ, Mustafa TOPKAFA, Huseyin KARA, Sarfaraz Ahmed MAHESAR, Sirajuddin SİRAJUDDİN

Blue $TiO_2$ nanotube arrays as semimetallic materials with enhanced photoelectrochemical activity towards water splitting

Umut AYDEMİR, Naeimeh Sadat PEIGHAMBARDOUST

Characterization and kinetics analysis of the thermal decomposition of the humic substance from hazelnut husk

Jale NAKTİYOK, Ufuk ATMACA, Duygu ADIGÜZEL, Murat ÇELİK, Fatma KARA

Synthesis and characterization of hexagonal boron nitride used for comparison of removal of anionic and cationic hazardous azo-dye: kinetics and equilibrium studies

Tuba TARHAN

Innovational combination of hetero-bifunctional N-PEG quinoline scaffolds derivatives with improved anticancer activity against breast and colon cancer cell lines and P-glycoprotein, cytochrome p450 enzyme activity prediction

Mahesh GAIDHANE, Ajay GHATOLE, Kushal LANJEWAR, Kishor HATZADE

Structural insights of two novel N-acetyl-glucosaminidase enzymes through in silico methods

Arif Sercan ŞAHUTOĞLU, Hatice DUMAN, Sercan KARAV, Steven Alex FRESE

Design, synthesis, cytotoxic activity, and apoptosis inducing effects of 4- and N-substituted benzoyltaurinamide derivatives

Cumhur GÜNDÜZ, Çağla KAYABAŞI, Özlem AKGÜL, Mümin Alper ERDOĞAN, Güliz ARMAĞAN, Derviş BİRİM

Mehmet Salih AGİRTAS, Derya Gungordu SOLGUN, Umit YİLDİKO, Abdullah OZKARTAL

Design of novel substituted phthalocyanines; synthesis and fluorescence, DFT, photovoltaic properties

Mehmet Salih AĞIRTAŞ, Ümit YILDIKO, Derya GÜNGÖRDÜ SOLĞUN, Abdullah ÖZKARTAL