Innovational combination of hetero-bifunctional N-PEG quinoline scaffolds derivatives with improved anticancer activity against breast and colon cancer cell lines and P-glycoprotein, cytochrome p450 enzyme activity prediction

Innovational combination of hetero-bifunctional N-PEG quinoline scaffolds derivatives with improved anticancer activity against breast and colon cancer cell lines and P-glycoprotein, cytochrome p450 enzyme activity prediction

Polyethylene glycol (PEG) is a polymer that is widely used as a carrier for drug delivery systems (DDS). A library of N-PEGylated quinoline derivatives of PEG molecular weight 200 was prepared rapidly after the activation of PEGs using maleic anhydride. Quinoline with a polymer backbone is essential as new material. PEG is a water-soluble nonionic polymer approved by food and drug organizations for medicine applications. Because of its nontoxic grapheme, it is widely utilized in numerous biochemical, cosmetic, pharmaceutical, and industrialized applications. The modern SwissADME is a web tool that stretches free admittance to a pool of hasty, yet solid, clarifying models for physicochemical properties, pharmacokinetics, and therapeutic science. The present facile synthetic strategy can be a practical approach for incorporating polymeric carriers conjugated with drug moieties, either in the backbone of the polymer or as a terminal and pendant group on the polymer chains.

___

  • 1. Herman S, Hoofman G, Schacht E. Polyethylene glycol with reactive endgroups: I. Modification of Protein. Journal of Bioactctive and Computible Polymers 1995; 10: 145-187.
  • 2. Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Bioconjugate Chemistry 1995; 16 (2-3): 157-182.
  • 3. Allen TM. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Advance Drug Delivery Review 1994; 13 (3): 285-309.
  • 4. Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochimica et Biophysica (BBA) Acta- Reviews on Biomembranes 1992; 1113: 171-199.
  • 5. Blume G, Cevc G, Crommelin MD, Bakker-Woudenberg IA, Kluft C et al. Specific targeting with poly (ethylene gycol)-modified liposomes:coupling of homing devices to the end of the polymeric chains combines effective target binding with long circulation times. Biochimica et Biophysica (BBA) Acta-Reviews on Biomembranes1993; 1149: 180-184.
  • 6. Chandrasekhar S, Narsihmulu C, Sultana SS, Reddy NR. Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis.Application in the Heck reaction. Organic Letters 2002; 4: 4399-4401.
  • 7. Jia Z, Zhang H, Huang J. Synthesis of poly(Ethylene glycol) with sulfadiazine and chlorambucil end groups and investigation of its antitumor activity. Bioorganic & Medicinal Chemistry Letters 2003; 13 (15): 2531-2534.
  • 8. Coessens V, Schacht EH, Domurado D. Synthesis and in vitro stability of macromolecular prodrugs of norfloxacin. Journal of Controlled Release 1997; 47: 283-291.
  • 9. Roseeuw E, Coessens V, Schacht E, Vrooman B, Domurado D et al. Polymeric prodrugs of antibiotics with improved efficiency. Journal of Materials Science: Materials in Medicine 1999; 10: 743-746.
  • 10. Yang M, Santerre P. Utilization of quinolone drugs as monomers: characterization of the synthesis reaction products for poly(norfloxacin diisocyanatododecane polycaprolactone). Biomacromolecules 2001; 2 (1): 134-141.
  • 11. Caliceti P, Salmaso S, Semenzato A, Carofiglio T, Fornasier R et al. Synthesis and physicochemical characterization of folate-cyclodextrin bioconjugate for active drug delivery. Bioconjugate Chemistry 2003; 14 (5): 899-908.
  • 12. Dube D, Blouin M, Brideau C, Chan CC, Desmarais S et al. Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological profile of L-746,530. Bioorganic and Medicinal Chemistry Letters 1998; 8 (10): 1255-1260.
  • 13. Gupta R, Gupta AK, Paul S, Somal P. Microwave-assisted synthesis and biological activities of some 7/9-substituted-4-(3-alkyl/aryl-5,6- dihydro-s-traizolo[3,4-b][1,3,4]thiadiazol-6-yl)-tetrazolo[1,5-a]quinolines. Indian Journal of Chemistry Section-B 2000; 39B: 847-852.
  • 14. Gupta R, Gupta AK, Paul S, Kachroo PL. Synthesis of 3, 4-dihidropyrimidin-2 (1H)-ones. Indian Journal of Chemistry Section-B. 1998; 37B: 1211-1213.
  • 15. Leenders F. PEGylation technology and biopharmaceuticals. Biopharmaceuticals 2006; 39-40.
  • 16. Veronese F, Mero A. The impact of PEGylation on biological therapies. BioDrugs 2008; 22 (5): 315-329.
  • 17. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advance Drug Delivery Review 2001; 46 (1-3): 3-26.
  • 18. Gaidhane MK, Ghatole AM, Lanjewar KR. Synthesis of chromone functionalized chitosan polymer: application/screening of its physical parameters. Polymer Science Series B 2020; 62(3): 1-12.
  • 19. Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Advance Drug Delivery Review 2002; 54 (4): 459-476.
  • 20. Harris JM, Liu Y, Chai S, Andrews MD, Vederas JC. Modification of the Swern oxidation: use of a soluble polymer-bound, recyclable, and odorless sulfoxide. The Journal of Organic Chemistry 1998; 63 (7): 2407-2409.
  • 21. Wipf P, Venkatraman S. An improved protocol for azole synthesis with PEG-supported Burgess reagent. Tetrahedron Letters 1996; 37: 4659-4662.
  • 22. Wentworth JP, Vandersteen AM, Janda KD. Poly(ethylene glycol) (PEG) as a reagent support: the preparation and utility of a PEG– triarylphosphine conjugate in liquid-phase organic synthesis (LPOS). Chemical Communications 1997; 8: 759-760.
  • 23. Aghahosseini H, Ramazani A, Taran J, Slepokura K, Lis T. Heteroaromatic aldehydes with unprecedented catalytic performance in selective radical reactions: synthesis of α‐aminophosphonate scaffolds. Asian Journal of Organic Chemistry 2019; 8 (8): 1519-1527.
  • 24. Hosseinzadeh Z, Razzaghi-Asl N, Ramazani A, Aghahosseini A, Ramazani A. Synthesis, cytotoxic assessment, and molecular docking studies of 2,6-diaryl-substituted pyridine and 3,4- dihydropyrimidine-2(1H)-one scaffolds. Turkish Journal of Cemistry 2020; 44 (1): 194- 213.
  • 25. Hosseinzaedeh Z, Ramazani A, Razzaghi-Asl NKS, Lis T. Boric acid as an efficient and green catalyst for the synthesis of 2-amino-4,6- diarylnicotinonitrile under microwave irradiation in solvent-free conditions. Turkish Journal of Chemistry 2019; 43 (2): 464-474.
  • 26. Ghatole AM, Lanjewar KR, Gaidhane MK. Antimicrobial activities; ionic liquid and microwave assisted synthesis of ring-substituted 3-(3-bromo-4-oxo-4h-chromen-2-yl)-4h-chromen-4-one. World Journal of Pharmaceutical Research 2014; 3 (3): 4336-4350.
  • 27. Ghatole AM, Lanjewar KR, Gaidhane MK, Hatzade KM. Evaluation of substituted methyl cyclohexanone hybrids for anti-tubercular, anti-bacterial and anti-fungal activity: Facile syntheses under catalysis by ionic liquids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 151: 515-524.
  • 28. Ghatole AM, Lanjewar KR, Hatzade KM, Gaidhane MK. A comparative synthesis of ring-substituted 3-(3-bromo-4-oxo-4h-chromen-2-yl)-4h-chromen-4-one. International Journal of Researches in Biosciences, Agriculture & Technology 2015; 1: 89-99.
  • 29. Ghatole AM, Lanjewar KR, Gaidhane MK. Synthesis and anti-microbial activity of some substituted bis[2-((e)-2-(4- benzylideneamino) thiazol-4-yl)-4-methylphenol] metal complexes. International Journal of Pharmacy and Pharmaceutical Sciences. 2014; 6 (2): 142-146.
  • 30. Ghatole AM, Gaidhane MK, Lanjewar KR, Hatzade KM. Pharmacokinetics, drug-likeness, medicinal properties, molecular docking analysis of substituted β-lactams synthesized via [Bmim]$[PF_6]/[Et_3 NH]^{+}[HSO_4]$- catalyzed coupling reaction. Chemistry: Bulgarian Journal of Science Education 2020; 29 (2): 206-244.
  • 31. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 2017; 7: 42717.
  • 32. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry 1999; 1 (1): 55-68.
  • 33. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry 2000; 43 (21):3867-3877.
  • 34. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW et al. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry 2002; 45 (12): 2615-2623.
  • 35. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry 2001; 44 (12): 1841-1846.
  • 36. Brenk R, Schipani A, James D, Krasowski A, Gilbert IH et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 2008; 3 (3): 435-44.
  • 37. Ogu GC, Maxa JL. Drug interaction due to cytochrome P450. Baylor University Medical Center Proceedings. 2000; 13 (4): 421-423.
  • 38. Delaney JS. Esol: Estimating aqueous solubility directly from molecular structure. Journal of Chemical Information and Computer Sciences 2004; 44 (3): 1000-1005.
  • 39. Fagerberg JH, Karlsson E, Ulander J, Hanisch G, Bergstrom CAS. Computational prediction of drug solubility in fasted simulated and aspirated human intestinal fluid. Pharmaceutical Research 2015; 32 (2): 578-589.
  • 40. Gaidhane MK, Ghatole AM, Lanjewar KR. Novel synthesis and antimicrobial activity of novel schiff base derived quinoline and their β-lactam derivatives. International Journal of Pharmacy Pharmaceutical Sciences 2013; 5 (3): 421-426.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK