Surface properties and catalytic performance of $Pt/PrSrCoO_4$ catalysts for NO reduction by CO

Surface properties and catalytic performance of $Pt/PrSrCoO_4$ catalysts for NO reduction by CO

Perovskite-type $Pr_{2-x}Sr_xCoO_4pmlambda$ mixed oxides were prepared by different calcination temperatures and were investigated by XRD, BET, TPD, TPR and XPS methods. These catalysts possess high catalytic activities towards the NO reduction by CO, and the activity of the PrSrCoO4 catalyst prepared by calcining at 750 °C is the best among these samples. This is explained in terms of its greater oxygen vacancies and larger BET surface areas. The influence of modification by a suitable amount of Pt-doping on the surface properties and catalytic activity for NO reduction by CO was studied. The results show that the Pt-modified $PrSrCoO_4$ catalysts display activity significantly higher than that of the Pt-free system $PrSrCoO_4$. Characterization of the catalysts by XRD, TPD, TPR and XPS methods reveals that both the surface and the bulk phase of the perovskite-type $PrSrCoO_4$ play important roles in the catalytic activities for NO reduction by CO.

___

  • 1.R.J.H. Voorhoeve, J.P. Remeika, L.E. Trimble and P.K. Gallagher, J. Sol. State. Chem., 14, 395-402 (1975).
  • 2.D. Ferri, L. Forni, M.A.P. Dekkers and B.E. Nieuwenhuys, Appl. Çatal. B, 16, 339-345 (1998).
  • 3.Y. Yokoi and H. Uchida, Catal. Today, 42, 167-174 (1998).
  • 4.J.M.D. Tascon, L.G. Tejuca and C.H. Rochester, J. Catal., 95, 558-564 (1985).
  • 5.S.D. Peter, E. Garbowski, N. Guilhaume, V. Perrichon and M. Primet, Catal. Lett., 54, 79-84 (1998).
  • 6.Y. Liu, X.G. Yang, Y.M. Liu and Y. Wu, Acta. Phy-chim. Sin., 15, 506-511 (1999).
  • 7.Y. Wu, Z. Zhao, Y. Liu and X. Yang, J. Mol. Catal. A: Chemical, 155, 89-100 (2000).
  • 8.Z. Zhao, X.G. Yang, Y. Liu and Y. Wu, J. Chin. Rare Earth. Soc, 16, 325-331 (1998).
  • 9.X.M. Yang, L.T. Luo and H. Zhong, Appl. Catal. A: General, 272, 299-303 (2004).
  • 10.L.T. Luo, H. Zhong and X.M. Yang. J. Serb. Chem. Soc, 69, 783-790 (2004).
  • 11.X.M. Yang, L.T. Luo and H. Zhong, React. Kinet. Catal. Lett., 81, 219-227 (2004).
  • 12.X.M. Yang, L.T. Luo and H. Zhong, Catal. Communications, 6, 13-17 (2005).
  • 13.Y. Tokura, H. Takagi and S. Uchida, Nature, 337, 345-351 (1989).
  • 14.Z. Zhao, X. Yang and Y. Wu, Appl. Catal. B, 8, 281-297 (1996).
  • 15.Y. Wu, T. Yu, B.S. Dou and C.X. Wang, J. Catal., 120, 88-93 (1989).
  • 16.R.J.H. Voorhoeve, "Advanced Materials in Catalysis", p. 132. Academic Press, New York, London. 1977.
  • 17.C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond and L.H. Gale, Surf. Interface Anal. 3,211-216 (1981).
  • 18.X.H. Yan, G.H. Rao and J.K. Liang, ChiA. Sci, Bull., 39, 896-901 (1994).
  • 19.K. Tabata and I. Matsumoto, J. Mater. Sci., 22, 1882-1887 (1987).
  • 20.Y. Olamoto and T.Imanaka, Appl. Catal. B, 73, 249-254 (1991).
  • 21.H. Taguchi, A. Sugita and M. Nagao, J. Sol. State. Chem., 119, 164-168 (1995).
  • 22.A.K. Ladavos and P.J. Pomonis, Appl. Catal. A: General, 165, 73-85 (1997).
  • 23.T. Huizinga, J. Grondelle and R. Prins, Appl, Catal. B, 10, 199-205 (1984).
  • 24.Y.T. Yu and B.Q. Xu, Acta. Chem. Sin., 61, 1758-1764 (2003).