Surface and chemical characteristics of platinum modified activated carbon electrodes and their electrochemical performance

Surface and chemical characteristics of platinum modified activated carbon electrodes and their electrochemical performance

Platinum (Pt) loaded activated carbons (ACs) were synthesized by the thermal decomposition of platinum (II) acetylacetonate $(Pt(acac)_2 )$ over chemically activated glucose-based biochar. The effect of Pt loading on surface area, pore characteristics, surface chemistry, chemical structure, and surface morphology were determined by various techniques. XPS studies proved the presence of metallic Pt0 on the AC surface. The graphitization degree of Pt loaded ACs were increased with the loaded $Pt^0$ amount. The electrochemical performance of the Pt-loaded ACs (Pt@AC) was determined not only by the conventional three-electrode system but also by packaged supercapacitors in CR2032 casings. The capacitive performance of Pt@AC electrodes was investigated via cyclic voltammetry (CV), galvanostatic charge-discharge curves (GCD), and impedance spectroscopy (EIS). It was found that the Pt loading increased the specific capacitance from 51 F/g to 100 F/g. The ESR drop of the packaged cell decreased with the Pt loading due to the fast flow of charge through the conductive pathways. The results showed that the surface chemistry is more dominant than the surface area for determining the capacitive performance of Pt loaded AC-based packaged supercapacitors.

___

  • 1. Tey JP, Careem MA, Yarmo MA, Arof AK. Durian shell-based activated carbon electrode for EDLCs. Ionics 2016; 22 (7): 1209-1216. doi: 10.1007/s11581-016-1640-2
  • 2. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH et al. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. Journal of Materials Chemistry 2012; 22 (3): 767-784. doi: 10.1039/c1jm14468e
  • 3. Yan R, Antonietti M, Oschatz M. Toward the experimental understanding of the energy storage mechanism and ıon dynamics in ıonic liquid based supercapacitors. Advanced Energy Materials 2018; 8 (18). doi: 10.1002/aenm.201800026
  • 4. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y et al. Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society 2008; 130 (9): 2730-2731. doi: 10.1021/ja7106178
  • 5. Frackowiak E. Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics 2007; 9 (15): 1774-1785. doi: 10.1039/b618139m
  • 6. Heimböckel R, Hoffmann F, Fröba M. Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Physical Chemistry Chemical Physics 2019; 21 (6): 3122-3133. doi: 10.1039/c8cp06443a
  • 7. Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001; 39: 937-950. doi: 10.1016/ S0008-6223(00)00183-4
  • 8. Bhomick PC, Supong A, Karmaker R, Baruah M, Pongener C et al. Activated carbon synthesized from biomass material using single-step KOH activation for adsorption of fluoride: experimental and theoretical investigation. Korean Journal of Chemical Engineering 2019; 36 (4): 551-562. doi: 10.1007/s11814-019-0234-x
  • 9. Budinova T, Savova D, B.Tsyntsarski, Ania CO, Cabal B et al. Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Applied Surface Science 2009; 255 (8): 4650-4657. doi: 10.1016/j.apsusc.2008.12.013
  • 10. Wang K, Wang H, Ji S, Feng H, Linkov V et al. Biomass-derived activated carbon as high-performance non-precious electrocatalyst for oxygen reduction. RSC Advances 2013; 3 (30): 12039. doi: 10.1039/c3ra41978a
  • 11. Coromina HM, Walsh DA, Mokaya R. Biomass-derived activated carbon with simultaneously enhanced $CO_2$ uptake for both pre and post combustion capture applications. Journal of Materials Chemistry A 2016; 4 (1): 280-289. doi: 10.1039/C5TA09202G
  • 12. Senthilkumar ST, Selvan RK. Flexible fiber supercapacitor using biowaste-derived porous carbon. ChemElectroChem 2015; 2 (8): 1065- 1065. doi: 10.1002/celc.201500292
  • 13. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S et al. Supercapacitors from activated carbon derived from banana fibers. Journal of Physical Chemistry C 2007; 111 (20): 7527-7531. doi: 10.1021/jp067009t
  • 14. Jin Z, Yan X, Yu Y, Zhao G. Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. Journal of Materials Chemistry A 2014; 2 (30): 11706-11715. doi: 10.1039/c4ta01413h
  • 15. Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Journal of Materials Chemistry 2009; 38 (29): 2520-2531. doi: 10.1039/b813846j
  • 16. Jyothibasu JP, Kuo DW, Lee RH. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019; 26 (7): 4495-4513. doi: 10.1007/s10570-019-02376-2
  • 17. Yumak T. Electrochemical performance of fabricated supercapacitors using $MnO_2$ /activated carbon electrodes. Hacettepe Journal of Biology and Chemistry 2019; 47 (1): 115-122. doi: 10.15671/HJBC.2019.281
  • 18. Wang H, Ma G, Tong Y, Yang Z. Biomass carbon/polyaniline composite and $WO_3$ nanowire-based asymmetric supercapacitor with superior performance. Ionics 2018; 24 (10): 3123-3131. doi: 10.1007/s11581-017-2428-8
  • 19. Yusin SI, Bannov AG. Synthesis of composite electrodes for supercapacitors based on carbon materials and the metal oxide/metal hydroxide system. Protection of Metals and Physical Chemistry of Surfaces 2017; 53 (3): 475-482. doi: 10.1134/S2070205117030261
  • 20. Borenstein A, Hanna O, Attias R, Luski S, Brousse T et al. Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A 2017; 5 (25): 12653-12672. doi: 10.1039/c7ta00863e
  • 21. Bagheri S, Julkapli NM. Effect of hybridization on the value-added activated carbon materials. International Journal of Industrial Chemistry 2016; 7 (3): 249-264. doi: 10.1007/s40090-016-0089-5
  • 22. Zhi M, Xiang C, Li J, Li M, Wu N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 2013; 5 (1): 72-88. doi: 10.1039/c2nr32040a
  • 23. Yumak T, Bragg D, Sabolsky EM. Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications. Applied Surface Science 2019; 469: 983-993. doi: 10.1016/j.apsusc.2018.09.079
  • 24. Li Y, Xu H, Zhao H, Lu L, Sun X. Improving the durability of Pt/C catalyst in PEM fuel cell by doping vanadium phosphate oxygen. Journal of Applied Electrochemistry 2016; 46 (2): 183-189. doi: 10.1007/s10800-015-0902-4
  • 25. Fan Y, Liu PF, Huang ZY, Jiang TW, Yao KL et al. Porous hollow carbon spheres for electrode material of supercapacitors and support material of dendritic Pt electrocatalyst. Journal of Power Sources 2015; 280: 30-38. doi: 10.1016/j.jpowsour.2015.01.096
  • 26. Akbayrak S, Özçifçi Z, Tabak A. Noble metal nanoparticles supported on activated carbon: highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane. Journal of Colloid and Interface Science 2019; 546: 324-332. doi: 10.1016/j.jcis.2019.03.070
  • 27. Díaz-Rey MR, Cortés-Reyes M, Herrera C, Larrubia MA, Amadeo N et al. Hydrogen-rich gas production from algae-biomass by low temperature catalytic gasification. Catalysis Today 2015; 257 (Part 2): 177-184. doi: 10.1016/j.cattod.2014.04.035
  • 28. Okajima K, Sakumoto N, Toya T, Sudoh M. Evaluation of metal-loaded activated carbon electrode for electrochemical capacitor prepared by plasma CVD method. Electrochemistry 2001; 69 (6): 428-430. doi: 10.5796/electrochemistry.69.428
  • 29. Suzuki T, Nakajima H, Ikenaga N, Oda H, Miyake T. Effect of mineral matters in biomass on the gasification rate of their chars. Biomass Conversion and Biorefinery 2011; 1 (1): 17-28. doi: 10.1007/s13399-011-0006-2
  • 30. Ouyang SC, Wang LW, Du XW, Zhang C, Yang J. In situ synthesis of highly-active Pt nanoclusters via thermal decomposition for hightemperature catalytic reactions. RSC Advances 2016; 6 (55): 49777-49781. doi: 10.1039/c6ra04681a
  • 31. Aphale A, Maisuria K, Mahapatra MK, Santiago A, Singh P et al. Hybrid electrodes by in-situ integration of graphene and carbonnanotubes in polypyrrole for supercapacitors. Scientific Reports 2015; 5: 14445. doi: 10.1038/srep14445
  • 32. Ruiz V, Blanco C, Raymundo-Piñero E, Khomenko V, Béguin F et al. Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochimica Acta 2007; 52 (15): 4969-4973. doi: 10.1016/j.electacta.2007.01.071
  • 33. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon 1999; 37: 1379- 1389. doi: 10.1016/S0008-6223(98)00333-9
  • 34. Fan X, Li C, Zeng G, Gao Z, Chen L et al. Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2 . Energy and Fuels 2010; 24 (8): 4250-4254. doi: 10.1021/ef100377f
  • 35. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 2015; 87 (9-10): 1051-1069. doi: 10.1515/pac-2014-1117
  • 36. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Applied Chemistry 1985; 57: 603-619. doi: 10.1351/pac198557040603
  • 37. Peng H, Ma G, Sun K, Mu J, Zhang Z et al. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application. ACS Applied Materials and Interfaces 2014; 6 (23): 20795-20803. doi: 10.1021/am505066v
  • 38. Sotomayor FJ, Cychosz KA, Thommes M. Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Accounts of Materials & Surface Research 2018; 3 (2): 34-50.
  • 39. Chang X, Zhai X, Sun S, Gu D, Dong L et al. $MnO_2/g-C_3$ N4 nanocomposite with highly enhanced supercapacitor performance. Nanotechnology 2017; 28: 135705-135714. doi: 10.1039/C5CC06713H
  • 40. Bleda-Martínez MJ, Maciá-Agulló JA, Lozano-Castelló D, Morallón E, Cazorla-Amorós D et al. Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon 2005; 43: 2677-2684. doi: 10.1016/j.carbon.2005.05.027
  • 41. Wei L, Yushin G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 2012; 1: 552-565. doi: 10.1016/j.nanoen.2012.05.002
  • 42. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A et al. Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Letters 2007; 7 (2): 238-242. doi: 10.1021/NL061702A
  • 43. Kemp KC, Baek S Bin, Lee WG, Meyyappan M, Kim KS. Activated carbon derived from waste coffee grounds for stable methane storage. Nanotechnology 2015; 26 (38). doi: 10.1088/0957-4484/26/38/385602
  • 44. Ma F, Ding S, Ren H, Liu Y. Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Advances 2019; 9 (5): 2474-2483. doi: 10.1039/c8ra09685f
  • 45. Zhang J, Gong L, Sun K, Jiang J, Zhang X. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. Journal of Solid State Electrochemistry 2012; 16 (6): 2179-2186. doi: 10.1007/s10008-012-1639-1
  • 46. Gong Y, Li D, Fu Q, Pan C. Influence of graphene microstructures on electrochemical performance for supercapacitors. Progress in Natural Science: Materials International 2015; 25 (5): 379-385. doi: 10.1016/j.pnsc.2015.10.004
  • 47. Liu PI, Chung LC, Ho CH, Shao H, Liang TM et al. Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques. Desalination 2016; 379: 34-41. doi: 10.1016/j.desal.2015.10.008
  • 48. Zequine C, Ranaweera CK, Wang Z, Dvornic PR, Kahol PK et al. High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Scientific Reports 2017; 7 (1): 1-12. doi: 10.1038/s41598-017-01319-w
  • 49. Pinkert K, Oschatz M, Borchardt L, Klose M, Zier M et al. Role of surface functional groups in ordered mesoporous carbide-derived carbon/ionic liquid electrolyte double-layer capacitor interfaces. ACS Applied Materials and Interfaces 2014; 6 (4): 2922-2928. doi: 10.1021/am4055029
  • 50. Lufrano F, Staiti P. Mesoporous Carbon materials as electrodes for electrochemical supercapacitors. International Journal of Electrochemical Science 2010; 5: 903-916.
  • 51. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 2013; 7 (6): 5131-5141. doi: 10.1021/nn400731g
  • 52. Usha Rani M, Nanaji K, Rao TN, Deshpande AS. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. Journal of Power Sources 2020; 471: 228387. doi: 10.1016/j.jpowsour.2020.228387
  • 53. Aricò AS, Srinivasan S, Antonucci V. DMFCs: from fundamental aspects to technology development. Fuel Cells 2001; 1 (2): 133-161. doi: 10.1002/1615-6854
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Sn(II)/PN@AC catalysts: synthesis, physical-chemical characterization, and applications

Yibo WU, Yongjun HAN, Li WANG, Qinbin LI, Wei MA, Fu XV, Fuxiang LI

Surface and chemical characteristics of platinum modified activated carbon electrodes and their electrochemical performance

Tuğrul YUMAK, Abdulkerim KARABULUT, Serap YUMAK

One‒pot green synthesized protein‒based silver nanocluster as prooxidant biosensor

Esin AKYÜZ

Enhancement of dispersion stability of inorganic additives via poly(sodium-4- styrenesulfonate) treatment geared to hydrogel applications

Filiz BORAN, Merve OKUTAN

Laccase bound to cryogel functionalized with phenylalanine for the decolorization of textile dyes

Bo MATTIASSON, Adil DENİZLİ, Yusuf Doruk ARACAGÖK, Neslihan İDİL, Işık PERÇİN

Antiinfective properties of ursolic acid-loaded chitosan nanoparticles against Staphylococcus aureus

Fatemeh GHASEMZADEH, Ghasem D. NAJAFPOUR, Maedeh MOHAMMADI

Optimization for esterification of saturated palm fatty acid distillate by D-optimal design response surface methodology for biolubricant production

Majd Ahmed JUMAAH, Nadia SALIH, Jumat SALIMON

Photocatalytic decomposition of textile dyestuffs by photosensitive metal oxide catalysts

Gülin Selda POZAN SOYLU, Esra Yeliz ALTUN, Z. Tuba ŞİŞMANOĞLU

Investigation of PZT-5H and PZT-8 type piezoelectric effect on cycling stability on SiMWCNT containing anode materials

M. Taha DEMİRKAN, Mehbare DOĞRUSÖZ, Rezan DEMİR ÇAKAN

Cytotoxic and apoptotic effects of Hypericum androsaemum on prostate adenocarcinoma (PC-3) and hepatocellular carcinoma (Hep G2) cell lines with identification of secondary metabolites by LC-HRMS

Mehmet BOĞA, Gül ÖZHAN, Ercan ÇINAR, Ahmet Ceyhan GÖREN, Tuğçe BORAN, Ezgi ERSOY, Esra EROĞLU ÖZKAN, Nurdan YAZICI BEKTAŞ