Cytotoxic and apoptotic effects of Hypericum androsaemum on prostate adenocarcinoma (PC-3) and hepatocellular carcinoma (Hep G2) cell lines with identification of secondary metabolites by LC-HRMS

Cytotoxic and apoptotic effects of Hypericum androsaemum on prostate adenocarcinoma (PC-3) and hepatocellular carcinoma (Hep G2) cell lines with identification of secondary metabolites by LC-HRMS

The study aims to determine the secondary metabolites of Hypericum androsaemum L. extracts by liquid chromatographyhigh resolution mass spectrometry (LC-HRMS), and investigate the antioxidant and cytotoxic activities of the plant. Cytotoxic activity was evaluated by MTT assay, and apoptosis induction abilities on human prostate adenocarcinoma (PC-3), and hepatocellular carcinoma (Hep G2) cell lines. Accordingly, major secondary metabolites were found as hederagenin (762 ± 70.10 μg/g) in the leaves dichloromethane (LD), herniarin (167 ± 1.50 μg/g) in fruit dichloromethane (FD), (-)-epicatechin (6538 ± 235.36 μg/g) in the leaves methanol (LM), (-)-epigallocatechin gallate (758 ± 20.46 μg/g) in the fruit methanol (FM), and caffeic acid (370 ± 8.88 μg/g) in the fruit water (FW), and (3313 ± 79.51 μg/g) in the leaves water (LW) extracts. LM exerted strong antioxidant activity in DPPH free (IC50 10.94 ± 0.08 μg/mL), and ABTS cation radicals scavenging (IC50 9.09 ± 0.05 μg/mL) activities. FM exhibited cytotoxic activity with IC50 values of 73.23 ± 3.06 µg/mL and 31.64 ± 2.75 µg/mL on PC-3 and Hep G2 cell lines, respectively. Being the richest extract in terms of quillaic acid (630 ± 18.9 μg/g), which is a well-known cytotoxic triterpenoid with proven apoptosis induction ability on different cells, FM extract showed apoptosis induction activity with 64.75% on PC-3 cells at 50 μg/mL concentration. The study provides promising results about the potential of Hypericum androsaemum on cancer prevention.

___

  • 1. Duman H, Cakir-Dindar EG. Hypericum alacamdaglariense (Hypericaceae), a new species from Turkey. Phytotaxa 2020; 470 (2): 176-185. doi: 10.11646/PHYTOTAXA.470.2.6
  • 2. Muller WE. St. John’s Wort and its active principles in depression and anxiety. Birkhause: Switzerland, 2005.
  • 3. Ersoy E, Ozkan EE, Boga M, Yilmaz MA, Mat A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Industrial Crops and Products 2019; 111735. doi: 10.1016/j.indcrop.2019.111735
  • 4. Guedes AP, Amorim LR, Vicente AM, Ramos G, Fernandes-Ferreira M. Essential oils from plants and in vitro shoots of Hypericum androsaemum L. Journal of Agricultural and Food Chemistry 2003; 51: 1399-1404. doi: 10.1002/pca.758
  • 5. Novais MH, Santos I, Mendes S, Pinto-Gomes C. Studies on pharmaceutical ethnobotany in Arrabida natural park (Portugal). Journal of Ethnopharmacology 2004; 93 (2-3): 183-195. doi: 10.1016/j.jep.2004.02.015
  • 6. Caprioli G, Alunno A, Beghelli D, Bianco A, Bramucci M et al. Polar constituents and biological activity of the berry-like fruits from Hypericum androsaemum L. Frontiers in Plant Science 2016; 232 (7). doi: 10.3389/fpls.2016.00232
  • 7. López V, Les F, Iannarelli R, Caprioli G, Maggi F. Methanolic extract from red berry-like fruits of Hypericum androsaemum: Chemical characterization and inhibitory potential of central nervous system enzymes. Industrial Crops and Products 2016; 94: 363-367. doi: 10.1016/j. indcrop.2016.09.007
  • 8. Eroğlu Ozkan E, Ozden TY, Ozsoy N, Mat A. Evaluation of chemical composition, antioxidant and anti-acetylcholinesterase activities of Hypericum neurocalycinum and Hypericum malatyanum. South African Journal of Science 2018; 114: 104-110. doi: 10.1016/j.sajb.2017.10.022
  • 9. Antognoni F, Lianza M, Poli F, Buccioni M, Santinelli C et al. Polar extracts from the berry-like fruits of Hypericum androsaemum L. as a promising ingredient in skin care formulations. Journal of Ethnopharmacology 2017; 195: 255-265. doi: 10.1016/j.jep.2016.11.029.
  • 10. Valentao P, Fernandes E, Carvalho F, Andrade PB, Seabra RM et al. Antioxidant activity of Hypericum androsaemum infusion: scavenging activity against superoxide radical, hydroxyl radical and hypochlorous acid. Biological and Pharmaceutical Bulletin 2002; 25: 1320-1323. doi: 10.1248/bpb.25.1320
  • 11. Valentão P, Carvalho M, Fernandes E, Carvalho F, Andrade PB et al. Protective activity of Hypericum androsaemum infusion against tertbutyl hydroperoxide-induced oxidative damage in isolated rat hepatocytes. Journal of Ethnopharmacology 2004; 92: 79-84. doi: 10.1016/j. jep.2004.02.004
  • 12. Rainha N, Lima E, Baptista J. Comparison of the endemic Azorean Hypericum foliosum with other Hypericum species: antioxidant activity and phenolic profile. Natural Product Research 2011; 25: 123-135. doi: 10.1080/14786419.2010.512560
  • 13. Nabavi SM, Nabavi SF, Sureda A, Caprioli G, Iannarelli R et al. The water extract of tutsan (Hypericum androsaemum L.) red berries exerts antidepressive-like effects and in vivo antioxidant activity in a mouse model of post-stroke depression. Biomedicine & Pharmacotherapy 2018; 99: 290-29. doi: 10.1016/j.biopha.2018.01.073
  • 14. Hernandez MF, Falé PL, Araújo MEM, Serralheiro MLM. Acetylcholinesterase inhibition and antioxidant activity of the water extracts of several Hypericum species. Food Chemistry 2010; 120: 1076-1082. doi: 10.1016/j.foodchem.2009.11.055
  • 15. Jabeur I, Tobaldini F, Martins N, Barros L, Martins I et al. Bioactive properties and functional constituents of Hypericum androsaemum L.: A focus on the phenolic profile. Food Research International 2016; 89: 422-431. doi: 10.1016/j.foodres.2016.08.040
  • 16. Gulcin I, Bursal E, Şehitoğlu MH, Bilsel M, Gören AC. Polyphenol contents and antioxidantactivity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food and Chemical Toxicology 2010; 48: 2227-2238. doi: 10.1016/j.fct.2010.05.053
  • 17. Han H, Yılmaz H, Gulcin I. Antioxidant activity of flaxseed (Linum usitatissimum L.) and analysis of its polyphenol contents by LC-MS/ MS. Records of Natural Products 2018; 12: 397-402. doi: 10.25135/rnp.46.17.09.155
  • 18. Topal M. Secondary metabolites of ethanol extracts of Pinus sylvestris cones from eastern Anatolia and their antioxidant, cholinesterase and α-glycosidase activities. Records of Natural Products 2020; 14: 129-138. doi: 10.25135/rnp.155.19.06.1326
  • 19. Karapandzova M, Stefkov G, Cvetkovikj Karanfilova I, Kadifkova Panovska T, Petreska Stanoeva J et al. Chemical characterization and antioxidant activity of mountain pine (Pinus mugo Turra, Pinaceae) from Republic of Macedonia. Records of Natural Products 2019; 13 (1): 50-63. doi: 10.25135/rnp.73.18.02.233
  • 20. Li L, Du W, Wang W. Evaluation of the antioxidative and anti-inflammatory effects of the extract of Ribes mandshuricum (Maxim.) Kom. Leaves. Records of Natural Products 2019; 13 (2): 141-155. doi: 10.25135/rnp.84.18.03.249
  • 21. Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry 1990; 38: 674–677. doi: 10.1021/jf00093a019.
  • 22. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. Journal of Agricultural and Food Chemistry 2004; 52: 7970-7981. doi: 10.1021/jf048741x
  • 23. Morgan DM, Tetrazolium (MTT) assay for cellular viability and activity, In Polyamine protocols. Totowa, NJ, USA: Humana Press, 1998; 179-184.
  • 24. Henry CM, Hollville E, Martin SJ. Measuring apoptosis by microscopy and flow cytometry. Methods. 2013; 61: 90-97. doi: 10.1016/j. ymeth.2013.01.008
  • 25. Hollville E, Martin SJ. Measuring apoptosis by microscopy and flow cytometry. Current Protocols in Bioinformatics 2016; 112: 14-38. doi: 10.1002/0471142735.im1438s112.
  • 26. Ozer Z, Carikci S, Yilmaz H, Kilic T, Dirmenci T et al. Determination of secondary metabolites of Origanum vulgare subsp. hirtum and O. vulgare subsp. vulgare by LC-MS/MS. Journal of Chemical Metrology 2020; 14 (1): 25-34. doi: 10.25135/jcm.33.20.04.1610
  • 27. Goren AC, Bilsel G, Bilsel M. Rapid and simultaneous determination of 25-OH-vitamin D2 and D3 in human serum by LC/MS/MS: Validation and uncertainty assessment. Journal of Chemical Metrology 2007; 1: 1-9.
  • 28. Sarikahya NB, Goren AC, Kirmizigul S. Simultaneous determination of several flavonoids and phenolic compounds in nineteen different Cephalaria species by HPLC-MS/MS. Journal of Pharmaceutical and Biomedical Analysis 2019; 173: 120-125. doi: 10.1016/j. jpba.2019.05.019
  • 29. Leito I, Helm I. Metrology in chemistry: some questions and answers. Journal of Chemical Metrology 2020; 14 (2): 83-87. doi: 10.25135/ jcm.50.20.10.1838
  • 30. Dincel D, Olgan H, Canbaloglu Z, Yalcin S, Erkucuk A et al. Determination of dihydrocapsaicin adulteration in dietary supplements using LC-MS/MS. Journal of Chemical Metrology 2020; 14 (1): 77 – 82. doi: 10.25135/jcm.36.20.01.1532
  • 31. Smelcerovic A, Zuehlke S, Spiteller M, Raabe N, Özen T. Phenolic constituents of 17 Hypericum species from Turkey. Biochemical Systematics and Ecology 2008; 36: 316-319. doi: 10.1016/j.bse.2007.09.002
  • 32. Cirak C, Radusiene J, Jakstas V, Ivanauskas L, Seyis F et al. Altitudinal changes in secondary metabolite contents of Hypericum androsaemum and Hypericum polyphyllum. Biochemical Systematics and Ecology 2017; 70: 108-115. doi: 10.1016/j.bse.2016.11.006
  • 33. Valentao P, Dias A, Ferreira M, Silva B, Andrade PB et al. Variability in phenolic composition of Hypericum androsaemum. Natural Product Research 2003; 17: 135-140. doi: 10.1080/1057563021000060149
  • 34. Napoli E, Siracusa L, Ruberto G, Carrubba A, Lazzara S et al. Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species – A comparative study. Phytochemistry 2018; 152: 162-173. doi: 10.1016/j.phytochem.2018.05.003
  • 35. Ramalhete N, Machado A, Serrano R, Gomes ET, Mota-Filipe H et al. Comparative study on the in vivo antidepressant activities of the Portuguese Hypericum foliosum, Hypericum androsaemum, and Hypericum perforatum medicinal plants. Industrial Crops and Products 2016; 82: 29-36. doi: 10.1016/j.indcrop.2015.12.014
  • 36. Keskin C, Aktepe N, Yukselten Y, Sunguroglu A, Boğa M. In-vitro antioxidant, cytotoxic, cholinesterase inhibitory activities and antigenotoxic effects of Hypericum retusum Aucher flowers, fruits and seeds methanol extracts in human mononuclear leukocytes. Iranian Journal of Pharmaceutical Research 2017; 16: 210-220.
  • 37. Sekeroglu N, Urlu E, Kulak M, Gezici S, Dang R. Variation in total polyphenolic contents, DNA protective potential and antioxidant capacity from aqueous and ethanol extracts in different plant parts of Hypericum perforatum L. Indian Journal of Pharmaceutical Education and Research 2017; 51: 1-7. doi: 10.5530/ijper.51.2s.43
  • 38. Eruygur N, Ucar E, Akpulat HA, Shahsavari K, Safavi SM et al. In vitro antioxidant assessment, screening of enzyme inhibitory activities of methanol and water extracts and gene expression in Hypericum lydium. Molecular Biology Reports 2019; 46: 2121–2129. doi: 10.1007/ s11033-019-04664-3
  • 39. Saddiqe Z, Maimoon A, Abbas G, Naeem I, Shahzad M. Pharmacological screening of Hypericum androsaemum extracts for antioxidant, anti-lipid peroxidation, antiglycation and cytotoxicity activity. Pakistan Journal of Pharmaceutical Sciences 2016; 29: 397-405.
  • 40. Boga M, Ertas A, Eroglu-Ozkan E, Kızıl M, Ceken B et al. Phytochemical analysis, antioxidant, antimicrobial, anticholinesterase and DNA protective effects of Hypericum capitatum var. capitatum extracts. South African Journal of Botany 2016; 104: 249-257. doi: 10.1016/j. sajb.2016.02.204
  • 41. Béjaoui A, Salem IB, Rokbeni N, M’rabet Y, Boussaid M et al. Bioactive compounds from Hypericum humifusum and Hypericum perfoliatum: inhibition potential of polyphenols with acetylcholinesterase and key enzymes linked to type-2 diabetes. Pharmaceutical Biology 2017; 55: 906-911. doi: 10.1080/13880209.2016.1270973 42. Kang WY, Song YL, Zhang L. a-Glucosidase inhibitory and antioxidant properties and antidiabetic activity of Hypericum ascyron. Medicinal Chemistry Research 2011; 20: 809–816. doi:10.1007/s00044-010-9391-5 43. Maltas E, Uysal A, Yildiztugay E, Aladag MO, Yildiz S et al. Investigation of antioxidant and antibacterial activities of some Hypericum species. Fresenius Environmental Bulletin 2013; 22: 862-869. 44. Mahomoodally MF, Zengin G, Zheleva-Dimitrova D, Mollica A, Stefanucci A et al. Metabolomics profiling, bio-pharmaceutical properties of Hypericum lanuginosum extracts by in vitro and in silico approaches. Industrial Crops and Products 2019; 133: 373–382. doi: 10.1016/j. indcrop.2019.03.033 45. Ersoy E, Eroglu-Ozkan E, Boga M, Mat A. Evaluation of in vitro biological activities of three Hypericum species (H. calycinum, H. confertum, and H. perforatum) from Turkey. South African Journal of Botany 2020; 130: 141-147. doi: 10.1016/j.sajb.2019.12.017 46. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochemical Pharmacology 2006; 71 (10): 1397-1421. doi: 10.1016/j.bcp.2006.02.009 47. Baruah MM, Sharma N, Khandwekar AP, Lavale G. Flavonoids and prostate cancer. American International Journal of Research in Formal, Applied and Natural Sciences 2016; 15: 1-7. 48. Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harbor Perspectives in Medicine 2018; 8. doi: 10.1101/cshperspect.a030361 49. Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: A review. Phytochemistry Reviews 2010; 9: 425-474. doi: 10.1007/ s11101-010-9183-z
  • 50. Ozkan EE, Özsoy N, Özhan G, Çelik BÖ, Mat A. Chemical composition and biological activities of Hypericum pamphylicum. Industrial Crops and Products 2013; 50: 182-189. doi: 10.1016/j.indcrop.2013.07.006
  • 51. Aztopal N, Erkisa M, Celikler S, Ulukaya E, Ari F. Antigrowth and apoptosis inducing effects of Hypericum olympicum L. and Hypericum adenotrichum Spach. on lung cancer cells in vitro: Involvement of DNA damage. Journal of Food Biochemistry 2016; 40: 559-566. doi: 10.1111/jfbc.12248
  • 52. Peron G, Hosek J, Rajbhandary S, Pant DR, Dall’Acqua S. $LC-MS^n$ and HR-MS characterization of secondary metabolites from Hypericum japonicum Thunb. Ex Murray from Nepalese Himalayan region and assessment of cytotoxic effect and inhibition of NK-κB and AP-1 transcription factors in vitro. Journal of Pharmaceutical and Biomedical Analysis 2019; 174: 663-673. doi:10.1016/j.jpba.2019.06.042
  • 53. Balikci N, Sarimahmut M, Ari F, Aztopal N, Özel MZ et al. Toxicity assessment of Hypericum olympicum subsp. olympicum L. on human lymphocytes and breast cancer cell lines. Journal of Applied Biomedicine 2020; 18 (1): 18-25. doi: 10.32725/jab.2020.002
  • 54. Conforti F, Loizzo MR, Statti AG, Menichini F. Cytotoxic activity of antioxidant constituents from Hypericum triquetrifolium Turra. Natural Product Research 2007; 21 (1): 42-46. doi: 10.1080/14786410500356243
  • 55. Hamzeloo-Moghadam M, Khalaj A, Malekmohammadi M. Cytotoxic activity and apoptosis induction of Hypericum scabrum L. Iranian Red Crescent Medical Journal 2015; 17 (10): e19453. doi: 10.5812/ircmj.19453
  • 56. Madunić J, Matulić M, Friščić M, Pilepić KH. Evaluation of the cytotoxic activity of Hypericum spp. on human glioblastoma A1235 and breast cancer MDA MB-231 cells. Journal of Environmental Science and Health 2016; 51 (13): 1157-1163. doi: 10.1080/10934529.2016.1206385
  • 57. Wyllie AH. “Where, O death, is thy sting?” A brief review of apoptosis biology. Molecular Neurobiology 2010; 42 (1): 4-9. doi: 10.1007/ s12035-010-8125-5
  • 58. Lowe SW, Lin AW. Apoptosis in cancer, Carcinogenesis 2000; 21 (3): 485-495. doi: 10.1093/carcin/21.3.485
  • 59. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of Hepatocellular Carcinoma. Hepatology 2020. doi: 10.1002/hep.31288
  • 60. Xavier CP, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Hypericum androsaemum water extract inhibits proliferation in human colorectal cancer cells through effects on MAP kinases and PI3K/Akt pathway. Food & Function Journal 2012; 3 (8): 844-52. doi: 10.1039/ C2FO10226A
  • 61. Wang K, Wang Y, Gao X, Chen X, Peng L et al. Polycyclic polyprenylated acylphloroglucinols and cytotoxic constituents of Hypericum androsaemum. Chemistry & Biodiversity 2012; 9 (6): 1213-1220. doi: 10.1002/cbdv.201100154
  • 62. Gaidi G, Correia M, Chauffert B, Beltramo JL, Wagner H et al. Saponins-mediated potentiation of cisplatin accumulation and cytotoxicity in human colon cancer cells. Planta Medica 2002; 68 (1): 70-72. doi: 10.1055/s-2002-19873
  • 63. Wang SR, Fang WS. Pentacyclic triterpenoids and their saponins with apoptosis-inducing activity. Current Topics in Medicinal Chemistry 2009; 9 (16): 1581-1596. doi: 10.2174/156802609789909821
  • 64. Chung J, Kang M, Kim YS. A triterpenoid saponin from Adenophora triphylla var. japonica suppresses the growth of human gastric cancer cells via regulation of apoptosis and autophagy. Tumor Biology 2014; 35 (12): 12021-12030. doi: 10.1007/s13277-014-2501-0
  • 65. Lacaille-Dubois MA. Bioactive saponins with cancer related and immunomodulatory activity: recent developments. Studies in Natural Products Chemistry 2005; 32: 209-246. doi: 10.1016/S1572-5995(05)80057-2
  • 66. Hwang JT, Ha J, Park IJ, Lee SK, Baik HW et al. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Letters 2007; 247 (1): 115-121. doi: 10.1016/j.canlet.2006.03.030
  • 67. Kian K, Khalatbary AR, Ahmadvand H, Karimpour Malekshah A, Shams Z. Neuroprotective effects of (−)-epigallocatechin-3-gallate (EGCG) against peripheral nerve transection-induced apoptosis. Nutritional Neuroscience 2019; 22 (8): 578-586. doi: 10.1080/1028415X.2017.1419542
  • 68. Li XM, Luo XG, He JF, Wang N, Zhou H et al. Induction of apoptosis in human cervical carcinoma HeLa cells by active compounds from Hypericum ascyron L. Oncology Letters 2018; 15 (3): 3944-3950. doi: 10.3892/ol.2018.7812
  • 69. Zhuang Q, Li J, Chen Y, Lin J, Lai F et al. Ethyl acetate extract of Hypericum japonicum induces apoptosis via the mitochondria-dependent pathway in vivo and in vitro. Molecular Medicine Reports 2015; 12 (4): 4851-4858. doi: 10.3892/mmr.2015.4086
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

New iodine-apatites: synthesis and crystal structure

Evgeny N. BULANOV, Sergey S. PETROV, Alexander V. KNYAZEV

Chemical composition and biological activities of essential oils of two new chemotypes of Glebionis Cass.

Hüseyin SERVİ

Pyridine substituted BODIPYs: synthesis, characterization and cholinesterease, α-glucosidase inhibitory, DNA hydrolytic cleavage effects

Zekeriya BIYIKLIOĞLU, Burak BARUT, Hüseyin BAŞ

Photocatalytic decomposition of textile dyestuffs by photosensitive metal oxide catalysts

Gülin Selda POZAN SOYLU, Esra Yeliz ALTUN, Z. Tuba ŞİŞMANOĞLU

Sn(II)/PN@AC catalysts: synthesis, physical-chemical characterization, and applications

Yibo WU, Yongjun HAN, Li WANG, Qinbin LI, Wei MA, Fu XV, Fuxiang LI

Characterization of extracts from Papaver rhoeas and potential valorization of these extracts in dyeing applications

Beatrice GEORGE, Mohand Ouidir BOUSSOUM, Abdelkader ALI-NEHARI, Rachida OULDMOKHTAR

Enhancement of dispersion stability of inorganic additives via poly(sodium-4- styrenesulfonate) treatment geared to hydrogel applications

Filiz BORAN, Merve OKUTAN

Effect of fuel choice on conductivity and morphological properties of samarium doped ceria electrolytes for IT-SOFC

Vedat SARIBOĞA, Mehmet Ali Faruk ÖKSÜZÖMER, Burcu AYGÜN

Surface and chemical characteristics of platinum modified activated carbon electrodes and their electrochemical performance

Tuğrul YUMAK, Abdulkerim KARABULUT, Serap YUMAK

GC-MS analyses and bioactivities of essential oil obtained from the roots of Chrysopogon zizanioides (L.) Roberty cultivated in Giresun, Turkey

Bengü ERTAN, Derya EFE, Mehmet Emin ŞEKER, Mustafa KARAKÖSE, Ayça AKTAŞ KARAÇELİK