Study of catalytic activities of nanostructure copper and cobalt supported ZSM-5 catalysts for conversion of volatile organic compounds

This paper reports the comparison of the activities of nanostructure Cu-ZSM-5 and Co-ZSM-5 catalysts for conversion of ethyl acetate and toluene and deals with the relationship between activity and structure of catalysts. The catalysts were characterized by ICP-AES, XPS, EDX, XRD, SEM, and TEM techniques. Catalytic studies were carried out under atmospheric pressure and in a temperature range of 200-500 °C. Cu-ZSM-5 catalysts showed better activity than Co-ZSM-5, revealing higher activity of copper cations. The higher activity was ascribed to higher electro-negativity, smaller cation radius, good distribution, and specific coordination of copper cations inside Cu-ZSM-5 catalysts. The activity of catalysts increased with the increase in loading at the range of metal loading (

Study of catalytic activities of nanostructure copper and cobalt supported ZSM-5 catalysts for conversion of volatile organic compounds

This paper reports the comparison of the activities of nanostructure Cu-ZSM-5 and Co-ZSM-5 catalysts for conversion of ethyl acetate and toluene and deals with the relationship between activity and structure of catalysts. The catalysts were characterized by ICP-AES, XPS, EDX, XRD, SEM, and TEM techniques. Catalytic studies were carried out under atmospheric pressure and in a temperature range of 200-500 °C. Cu-ZSM-5 catalysts showed better activity than Co-ZSM-5, revealing higher activity of copper cations. The higher activity was ascribed to higher electro-negativity, smaller cation radius, good distribution, and specific coordination of copper cations inside Cu-ZSM-5 catalysts. The activity of catalysts increased with the increase in loading at the range of metal loading (

___

  • TEM FTIR Fourier Transmission Infrared Spectroscopy VOCs XRD X-ray Dispersion GHSV Gas hourly space velocity θ D Mean crystal size of ZSM-5 K= Constant of Scherer equation (0.89) Yang, Y.; Xu, X.; Sun, K. J. Hazard. Mater. B, 2007, 139, 140-145.
  • D´ıaz. E.; Ord´oez, S.; Vega, A.; Coca, J.; Microporous Mesoporous Mater, 2005, 83, 292-300.
  • Zhan, B.; Mod´en,B.; Dakka, J.; Santiesteban, J.; Iglesia, E. J. Catal, 2007, 245, 316-325.
  • Kharas, K.; Liu, D.; Robota, H. Catal Today, 1995, 26, 129-145.
  • Nicolaides, C.; Sincadu, N.; Scurrell, M. Stud Surf Sci Catal, 2001, 136, 333-338.
  • Fajerwerg, K.; Debellefontaine, H. Appl Catal B, 1996, 10, 229-235.
  • Wang, L.; Sang, S.; Meng, S.; Zhang, Y.; Qi, Y.; Liu, Z. Mater Lett, 2007, 61, 1675-1678.
  • Yamanaka, H.; Hamada, R.; Nibuta, H.; Nishiyama, S.; Tsuruya, S. J Mol Catal A, 2002, 178, 89-95.
  • Shibata, Y.; Hamada, R.; Ueda, T.; Ichihashi, Y.; Nishiyama, S.; Tsuruya, S. Ind Eng Chem Res, 2005, 44, 8772.
  • Ribeiro, M.; Silva, J.; Brimaud, S.; Antunes, A.; Silva, E.; Fernandes, A.; Magnoux, P. Appl Catal B, 2007, 70, 392.
  • Burgos, N.; Paulis, M.; Antxusteg, M.; Montes, M. Appl Catal B, 2002, 38, 251-258.
  • Wichterlov, B.; Dedecek, J.; Sobalik, Z.; Proceedings 12thInternational Zeolite Conference, Materials Research Society, Warrendale, 1999.
  • Li, Y. J.; Armor, J. N. J. Catal., 1994, 150, 376-387.
  • Mortier, W. J.; Compilation of Extraframework Sites in Zeolites, Butterworth, London, 1982.
  • Dedecek, J.; Wichterlov´a, B. J. Phys. Chem. B, 1999, 103, 1462-1476.
  • Dedecek, J.; Kauck´y, D.; Wichterlov´a, B.; Microporous Mesoporous Mater., 2000, 483, 35-36.
  • Kauck´y, D.; Vondrov´a, A.; Dedecek, J.; Wichterlov´a, B. J Catal., 2000, 194, 318-329.
  • Sobalik, Z.; Dedecek, J.; Kauccky, D.; Wichterlova, B., Drozdova, L.; Parins, R.; J. Catal, 2000, 194, 330-342.
  • Beutel, T.; S´arK´any, J.; Yan, J.; Sachtler, W. M. J Phys Chem, 1996, 100, 845-851.
  • Yashnik, S.; Ismagilov, Z.; Anufrienko, V. Catal. Today, 2005, 110, 310-322.
  • Chupin, C.; Veen, A.C.; Konduru, M.; Despres J.; Mirodatos, C. J Catal, 2006, 241, 103-114.
  • Hoefnagel, A.; Bekkum, H. Catal. Lett., 2003, 85,7-11.
  • Kirumakki, S.; Nagaraju R.; Cari, N.; Narayanan, S. J. Catal., 2004, 221, 549-559.
  • Gervasini, A. Appl. Catal. A, 1999, 180, 71-82.
  • Niaei, A.; Salari, D.; Hosseini, S.A.; Khatamian, M.; Jodaei, A. Chinese J. Chem., 2009, 27, 484-488.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis and characterization of new optically active polyamides containing 2-(4-nitro-1,3-dioxoisoindolin-2-yl)succinic acid and aromatic diamines via direct polycondensation

Khalil FAGHIHI, Morteza Absalar And Mohsen HAJIBEYGI

Density functional theory investigation of electrophilic addition reaction of chlorine to tricyclo[4.2.2.$2^{2,5}$ ]dodeca-1,5-diene

Rza ABBASOĞLU, Ahmet YAŞAR

Radical scavenging potential of compounds isolated from Vitex agnus-castus

Talat MAKHMOOR, - AZIZUDDIN, Muhammad İqbal CHOUDHARY

Characterization of chitosan in acetic acid: Rheological and thermal studies

Esam A. EL-HEFIAN, Elham S. ELGANNOUDI, Azizah MAINAL

Synthesis of some pyridazine derivatives carrying urea, thiourea, and sulfonamide moieties and their antimicrobial activity

Deniz S. DOĞRUER, Şölen URLU, Tijen ÖNKOL

Influence of AlCl3 on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films

Adnan KURT

Study of catalytic activities of nanostructure copper and cobalt supported ZSM-5 catalysts for conversion of volatile organic compounds

Aligholi NIAEI, Dariush SALARI, Seyed Ali HOSSEINI

Influence of $AICI_3$ on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films

Adnan KURT

Some bioactive organotin(IV) derivatives with 3,4-dichlorophenylacetic acid: synthesis, spectroscopic properties, and X-ray structure of [Sn4(C4H9)8(OOCCH2C6H3Cl2)4O2]

Muhammad Adeel SAEED, Muhammad Khawar RAUF

Synthesis, characterization, and application of nanoporous materials based on silicon- or halogen-containing spiroketal and spirothioketal polymers

Hamada Hamada ABDEL-RAZIK