Spectrophotometric determination of iron species using ionic liquid ultrasound assisted dispersive liquid--liquid microextraction

A simple and efficient method for speciation and determination of iron in different water samples was developed. The method is based on ionic liquid ultrasound assisted dispersive liquid--liquid microextraction (IL-USA-DLLME) followed by spectrophotometric determination. Fe(II) is complexed with 2,4,6-tri(2'-pyridyl)-l,3,5-triazine (TPTZ{)}, neutralized through ion pair formation with sodium dodecyl sulfate (SDS) and extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate [C$_{6}$MIM][PF$_{6}$]. Total iron amount was determined after reduction of Fe(III) to Fe(II) with hydroxylamine hydrochloride. The concentration of Fe(III) was determined from the difference of concentration of total iron and Fe(II). The important parameters such as the type and volume of the extraction solvent, pH, ligand concentration, and ionic-strength were optimized. Under the optimum conditions, the calibration graph was linear over the range of 5.0--140.0 $\mu $g L$^{-1}$ with the detection limit of 0.2 $\mu $g L$^{-1}$. The relative standard deviation for five replicates measurement of 100 $\mu $g L$^{-1}$ of Fe(II) was 1.5{\%}. The proposed method was successfully applied to the determination of iron species in water samples.

Spectrophotometric determination of iron species using ionic liquid ultrasound assisted dispersive liquid--liquid microextraction

A simple and efficient method for speciation and determination of iron in different water samples was developed. The method is based on ionic liquid ultrasound assisted dispersive liquid--liquid microextraction (IL-USA-DLLME) followed by spectrophotometric determination. Fe(II) is complexed with 2,4,6-tri(2'-pyridyl)-l,3,5-triazine (TPTZ{)}, neutralized through ion pair formation with sodium dodecyl sulfate (SDS) and extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate [C$_{6}$MIM][PF$_{6}$]. Total iron amount was determined after reduction of Fe(III) to Fe(II) with hydroxylamine hydrochloride. The concentration of Fe(III) was determined from the difference of concentration of total iron and Fe(II). The important parameters such as the type and volume of the extraction solvent, pH, ligand concentration, and ionic-strength were optimized. Under the optimum conditions, the calibration graph was linear over the range of 5.0--140.0 $\mu $g L$^{-1}$ with the detection limit of 0.2 $\mu $g L$^{-1}$. The relative standard deviation for five replicates measurement of 100 $\mu $g L$^{-1}$ of Fe(II) was 1.5{\%}. The proposed method was successfully applied to the determination of iron species in water samples.

___

  • Total dissolved iron was determined by effective reduction of Fe(III) to Fe(II) upon addition of 0.6 mL of the hydroxylamine hydrochloride solution prior to the extraction procedure. The concentration of Fe(III) was calculated by subtracting the concentration of Fe(II) from total iron concentration. Xiong, C.; Jiang, Z.; Hu, B. Anal. Chim. Acta 2006, 559, 113–119.
  • Pehlivan, E.; Kara, D. Microchim. Acta 2007, 158, 137–144.
  • Huang, Y.; Yuan, D.; Ma, J.; Zhang, M.; Chen, G. Microchim. Acta 2009, 166, 221–228.
  • Florence, T.; Batley, G. E. Crit. Rev. Anal. Chem. 1980, 9, 219–296.
  • Florence, T. Talanta 1982, 29, 345–364.
  • Bag, H.; Turker, A. R.; Tunceli, A.; Lale, M. Anal. Sci. 2001, 17, 901–904.
  • Li, W. B.; Yao, J.; Tao, P. P.; Guo, M. T.; Feng, X. Y.; He, Y. N.; Fang, C. R.; Shen, D. S. J. Hazard. Mater. , 182, 640–648. Ashdown, R. P.; Marriott, P. J. J. High. Resolut. Chromatogr. 2000, 23, 430–436.
  • Yan, X. P.; Hendry, M. J.; Kerrich, R. Anal. Chem. 2000, 72, 1879–1884.
  • Dadfarnia, S.; Haji Shabani, A. M.; Amirkavei, M. Turk. J. Chem. 2013, 37, 746–755.
  • Siyal, A. N.; Memon, S. Q.; El¸ci, A.; Divrikli, U.; Khuhawar, M. Y.; El¸ci, L. Turk. J. Chem. 2014, 38, 553–567.
  • Pournaghi-Azar, M.; Fatemi, B. Microchem. J. 2000, 65, 199–207.
  • Croot, P.; Johansson, M. Electroanalysis 2000, 12, 565–576.
  • Elrod, V. A.; Johnson, K. S.; Coale, K. H. Anal. Chem. 1991, 63, 893–898.
  • Ahmad, M. J.; Roy, U. K. Turk. J. Chem. 2009, 33, 709–726.
  • Dehghani Mohammad Abadi, M.; Ashraf, N.; Chamsaz, M.; Shemirani, F. Talanta 2012, 99, 1–12.
  • Shakerian, F.; Dadfarnia, S.; Shabani, A. M. H.; Rohani, M. Talanta 2008, 77, 551–555.
  • Van den Berg, C. M. G. Anal. Chem. 2006, 78, 156–163.
  • Grotti, M.; Soggia, F.; Ardini, F.; Frache, R. J. Anal. At. Spectrom. 2009, 24, 522–527.
  • Yaman, M.; Kaya, G. Anal. Chim. Acta 2005, 540, 77–81.
  • Tabrizi, A. B. J. Hazard. Mater. 2010, 183, 688–693.
  • Shakerian, F.; Dadfarnia, S.; Shabani, A. H. J. Iran. Chem. Soc. 2009, 6, 594–601.
  • Duran, C.; ¨Ozde¸s, D.; Kaya, E. C¸ .; Kantekin, H.; Bulut, V. N.; T¨ufek¸ci, H. Turk. J. Chem. 2012, 36, 445–456.
  • Rezaee, M.; Assadi, Y.; Milani Hosseini, M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S. J. Chromatogr. A 2006, 1116, –9.
  • Shokoufi, N.; Shemirani, F.; Assadi, Y. Anal. Chim. Acta 2007, 597, 349–356.
  • Yousefi, S. R.; Shemirani, F. Anal. Chim. Acta 2010, 669, 25–31.
  • Unsal, Y. E.; Tuzen, M.; Soylak, M. Turk. J. Chem. 2014, 38, 173–181.
  • Ojeda, C. B.; Rojas, F. S. Chromatographia 2009, 69, 1149–1159.
  • Sun, P.; Armstrong, D. W. Anal. Chim. Acta 2010, 661, 1–16.
  • Shamsi, S. A.; Danielson, N. D. J. Sep. Sci. 2007, 30, 1729–1750.
  • Dadfarnia, S.; Haji Shabani, A. M.; Shirani Bidabadi, M.; Jafari, A. A. J. Hazard. Mater. 2010, 173, 534–538.
  • Capote, F. P.; de Castro, M. L. Anal. Bioanal. Chem. 2007, 387, 249–257.
  • Luque de Castro, M.; Priego-Capote, F. Anal. Chim. Acta 2007, 583, 2–9.
  • Regueiro, J.; Llompart, M.; Garcia-Jares, C.; Garcia-Monteagudo, J. C.; Cela, R. J. Chromatogr. A 2008, 1190, –38.
  • Gao, Z.; Ma, X. Anal. Chim. Acta 2011, 702, 50–55.
  • Rajabi, M.; Asemipour, S.; Barfi, B.; Jamali, M. R.; Behzad, M. J. Mol. Liq. 2014, 194, 166–171.
  • Zhou, Q.; Zhang, X.; Xiao, J. J. Chromatogr. A 2009, 1216, 4361–4365.
  • Khayatian, G.; Hosseini, S. S.; Hassanpoor, S. J. Iran. Chem. Soc. 2013, 10, 1167–1173.
  • Bahar, S.; Zakerian, R. J. Braz. Chem. Soc. 2012, 23, 944–950.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Tetraphenylsilane group containing carbazoles as high triplet energy host materials for solution-processable PhOLEDs

SALİHA ÖNER, İLKER ÖNER, HAYDAR AKDAĞ, CANAN VARLIKLI

Synthesis and in vitro cytotoxic activity of novel pyrazolo[1,5-$a$]pyrimidines and related Schiff bases

ASHRAF SAYED HASSAN, TAGHRID SHOUKRY HAFEZ, SOUAD ABDEL MEGUID OSMAN, MAMDOUH MOAWAD ALI

Preparation and physicochemical characterizations of solid lipid nanoparticles containing DOTAP$^®$ for DNA delivery

GÜLAY BÜYÜKKÖROĞLU, EMİNE YASEMİN YAZAN, AYŞE FİLİZ ÖNER

Thermogravimetric analysis-based screening of metal (II) chlorides as dopants for the destabilization of solid-state hydrazine borane

WEIGUANG CHEN, UMIT BILGE DEMIRCI

A new series of Cu(II) and Ni(II) complexes of NO bidentate 4-NO$_{2}$-benzoylhydrazones: synthesis, characterization, and biological studies

HATİCE BAŞPINAR KÜÇÜK, EMEL MATARACI KARA, BERNA ÖZBEK ÇELİK

Solid-phase total synthesis of cyclic peptide brachystemin A and its immunomodulating activity

ZAFAR ALI SHAH, ALMAS JABEEN, SAMREEN SOOMRO, M.AHMED MESAIK, M.IQBAL CHOUDHARY, FARZANA SHAHEEN

Enzyme-assisted modification of cellulose/chitin fibers with NIPAAm

ANAMARIA IRIMIA, EMILIA CSISZAR, MARIUS DOBROMIR, FLORICA DOROFTEI, CORNELIA VASILE

Synthesis and in vitro cytotoxic activity of novel pyrazolo[1,5-a]pyrimidines and related Schiff bases

Ashraf Sayed HASSAN, Taghrid Shoukry HAFEZ, Souad Abdel Meguid OSMAN, Mamdouh Moawad ALI

Influence of acid and heavy metal cation exchange treatments on methane adsorption properties of mordenite

MERYEM SAKIZCI, LEYLA ÖZGÜL KILINÇ

Spectrophotometric determination of iron species using ionic liquid ultrasound assisted dispersive liquid liquid microextraction

Alireza SHAMILI BAZMANDEGAN, Ali Mohammad SHABANI HAJI, Mahboubeh SAEIDI, Masoud MOGHADAM ROHANI, Shayessteh DADFARNIA