Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode

Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode

This study reports a detailed analysis of an electrode material containing poly(phenolphthalein), carbon nanotubes and gold nanoparticles which shows superior catalytic effect towards to hydrazine oxidation in Britton–Robinson buffer (pH 10.0). Glassy carbon electrode was modified by electropolymerization of phenolphthalein (PP) monomer (poly(PP)/GCE) and the multiwalled carbon nanotubes (MWCNTs) was dropped on the surface. This modified surface was electrodeposited with gold nanoparticles (AuNPs/CNT/poly(PP)/GCE). The fabricated electrode was analysed the determination of hydrazine using cyclic voltammetry, linear sweep voltammetry and amperometry. The peak potential of hydrazine oxidation on bare GCE, poly(PP)/GCE, CNT/GCE, CNT/ poly(PP)/GCE, and AuNPs/CNT/poly(PP)/GCE were observed at 596 mV, 342 mV, 320 mV, 313 mV, and 27 mV, respectively. A shift in the overpotential to more negative direction and an enhancement in the peak current indicated that the AuNPs/CNT/poly(PP)/GC electrode presented an efficient electrocatalytic activity toward oxidation of hydrazine. Modified electrodes were characterized with High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Amperometric current responses in the low hydrazine concentration range of 0.25–13 µM at the AuNPs/CNT/poly(PP)/GCE. The limit of detection (LOD) value was obtained to be 0.083 µM. A modified electrode was applied to naturel samples for hydrazine determination.

___

  • 1. Koçak S, Aslişen B. Hydrazine oxidation at gold nanoparticles and poly(bromocresol purple) carbon nanotube modified glassy carbon electrode. Sensors and Actuators B: Chemical 2014; 196: 610-618. doi: 10.1016/j.snb.2014.02.061
  • 2. Abdul Aziz M, Kawde AN. Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine. Talanta 2013;115: 214-221. doi: 10.1016/j.talanta.2013.04.038
  • 3. Mazloum-Ardakani M, Rajabi H, Mirjalili BBF, Beitollahi H, Akbari A. Nanomolar determination of hydrazine by TiO2 nanoparticles modified carbon paste electrode. Journal of Solid State Electrochemistry 2010;14 (12): 2285-2292. doi: 10.1007/s10008-010-1060-6
  • 4. Wang C, Zhang L, Guo Z, Xu J, Wang H et al. A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchimica Acta 2010; 169 (1): 1-6. doi: 10.1007/s00604-010-0304-6
  • 5. Vernot EH, Macewen JD, Bruner RH, Haun CC, Kinkead ER et al. Long-term inhalation toxicity of hydrazine. Toxicological Sciences 1985; 5: 1050-1064. doi: 10.1093/toxsci/5.6part1.1050
  • 6. Ozoemena KI. Anodic oxidation and amperometric sensing of hydrazine at a glassy carbon electrode modified with cobalt (II) phthalocyanine-cobalt (II) tetraphenylporphyrin (CoPc-(CoTPP)4) supramolecular complex. Sensors 2006; 6 (8): 874-891. doi: 10.3390/ s6080874
  • 7. Pathak A, Gupta BD. Palladium nanoparticles embedded PPy shell coated CNTs towards a high performance hydrazine detection through optical fiber plasmonic sensor. Sensors and Actuators B: Chemical 2020; 128717. doi: 10.1016/j.snb.2020.128717
  • 8. Mori M, Tanaka K, Xu Q, Ikedo M, Taoda H et al. Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection. Journal of Chromatography A 2004; 1039: 135-139. doi: 10.1016/j. chroma.2004.03.075
  • 9. Ensafi AA, Rezaei B. Flow injection determination of hydrazine with fluorimetric detection. Talanta 1998; 47 (3): 645-649. doi: 10.1016/ S0039-9140(98)00113-1
  • 10. Jayasri D, Narayanan SS. Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite-wax composite electrode. Journal of Hazardous Materials 2007; 144 (1-2): 348-354. doi: 10.1016/j.jhazmat.2006.10.038
  • 11. Mo JW, Ogorevc B, Zhang X, Pihlar B. Cobalt and copper hexacyanoferrate modified carbon fiber microelectrode as an all-solid potentiometric microsensor for hydrazine. Electroanalysis 2000; 12 (1): 48-54. doi: 10.1002/(SICI)1521-4109(20000101)12:1<48::AIDELAN48>3.0.CO;2-H
  • 12. Budkuley JS. Determination of hydrazine and sulphite in the presence of one another. Microchimica Acta 1992; 108 (1-2): 103-105. doi: 10.1007/BF01240376
  • 13. Safavi A, Karimi MA. Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta 2002; 58 (4): 785-792. doi: 10.1016/S0039-9140(02)00362-4
  • 14. Peng H, Liang C. Electrochemical determination of hydrazine based on polydopamine-reduced graphene oxide nanocomposite. Fullerenes, Nanotubes and Carbon Nanostructures 2017; 25 (1): 29-33. doi: 10.1080/1536383X.2016.1248759
  • 15. Rao D, Sheng Q, Zheng J. Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine. Sensors and Actuators B: Chemical 2016; 236: 192-200. doi: 10.1016/j.snb.2016.05.160
  • 16. Álvarez-Ruiz B, Gómez R, Orts JM, Feliu JM. Role of the metal and surface structure in the electro-oxidation of hydrazine in acidic media. Journal of The Electrochemical Society 2002; 149 (3): D35. doi: 10.1149/1.1447944
  • 17. Kim SK, Jeong YN, Ahmed MS, You JM, Choi HC et al. Electrocatalytic determination of hydrazine by a glassy carbon electrode modified with PEDOP/MWCNTs-Pd nanoparticles. Sensors and Actuators B: Chemical 2011; 153 (1): 246-251. doi: 10.1016/j.snb.2010.10.039
  • 18. Koçak S, Aslışen B, Koçak ÇC. Determination of hydrazine at a platinum nanoparticle and poly(bromocresol purple) modified carbon nanotube electrode. Analytical Letters 2016; 49 (7): 990-1003. doi: 10.1080/00032719.2015.1038548
  • 19. Koçak ÇC, Altın A, Aslışen B, Koçak S. Electrochemical preparation and characterization of gold and platinum nanoparticles modified poly(taurine) film electrode and its application to hydrazine determination. International Journal of Electrochemical Science 2016;11 (1): 233-249.
  • 20. Morgan PW. Linear condensation polymers from phenolphthalein and related compounds. Journal of Polymer Science Part A: General Papers 1964; 2 (10): 4707-4707. doi: 10.1002/pol.1964.100021037
  • 21. Christie RM. Miscellaneous chemical classes of organic dyes and pigments. Royal Society of Chemistry “Colour Chemistry” 2001; 102- 117. doi: 10.1039/9781847550590-00102
  • 22. Dunnick JK, Hailey JR. Phenolphthalein exposure causes multiple carcinogenic effects in experimental model systems. Cancer Research 1996; 56 (21): 4922-4926.
  • 23. Welch CM, Compton RG. The use of nanoparticles in electroanalysis: A review. Analytical and Bioanalytical Chemistry 2006; 384 (3): 601-619. doi: 10.1007/s00216-005-0230-3
  • 24. Pillay J, Ozoemena KI, Tshikhudo RT, Moutloali RM. Monolayer-protected clusters of gold nanoparticles: impacts of stabilizing ligands on the heterogeneous electron transfer dynamics and voltammetric detection. Langmuir 2010; 26 (11): 9061-9068. doi: 10.1021/la904463g
  • 25. Nair AS, Tom RT, Rajeev Kumar VR, Subramanıam C, Pradeep T. Chemical interactions at noble metal nanoparticle surfaces - catalysis, sensors and devices. Cosmos 2007; 03 (01) 103-124. doi: 10.1142/s0219607707000244
  • 26. Kumar AS, Shanmugam R, Vishnu N, Pillai KC, Kamaraj S. Electrochemical immobilization of ellagic acid phytochemical on MWCNT modified glassy carbon electrode surface and its efficient hydrazine electrocatalytic activity in neutral pH. Journal of Electroanalytical Chemistry 2016; 782: 215-224. doi: 10.1016/j.jelechem.2016.10.010
  • 27. Gioia D, Casella IG. Pulsed electrodeposition of palladium nano-particles on coated multi-walled carbon nanotubes/nafion composite substrates: Electrocatalytic oxidation of hydrazine and propranolol in acid conditions. Sensors and Actuators B: Chemical 2016; 237: 400- 407. doi: 10.1016/j.snb.2016.06.109
  • 28. Hatip M. Preparation and characterization of polymer based metal nanoparticles modified carbon nanotube composite electrodes: determination and investigation of electrochemical behavior of hydrazine. PhD, Manisa Celal Bayar University, Manisa, Turkey, 2020.
  • 29. Filik H, Çetintaş G, Avan AA, Aydar S, Koç SN et al. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film. Talanta 2013; 116: 245-250. doi: 10.1016/j.talanta.2013.05.031
  • 30. Mukherjee P, Nandi AK. Bimetallic Aucore-Agshell nanoparticles from interfacial redox process using poly(o-methoxyaniline). Journal of Colloid and Interface Science 2010; 344 (1): 30-36. doi: 10.1016/j.jcis.2009.12.020
  • 31. Velamakanni A, Magnuson CW, Ganesh KJ, Zhu Y, An J et al. Site-specific deposition of Au nanoparticles in CNT films by chemical bonding. ACS Nano 2010; 4 (1): 540-546. doi: 10.1021/nn901278t
  • 32. Govindhan M, Chen A. Simultaneous synthesis of gold nanoparticle/graphene nanocomposite for enhanced oxygen reduction reaction. Journal of Power Sources 2015; 274: 928-936. doi: 10.1016/j.jpowsour.2014.10.115
  • 33. Ardakani MM, Karimi MA, Zare MM, Mirdehghan SM. Investigation of electrochemical behavior of hydrazine with alizarin as a mediator on glassy carbon electrode. International Journal of Electrochemical Science 2008; 3 (3): 246-258.
  • 34. Martins AC, Huang X, Goswami A, Koh K, Meng Y et al. Fibrous porous carbon electrocatalysts for hydrazine oxidation by using cellulose filter paper as precursor and self-template. Carbon 2016; 102: 97-105. doi: 10.1016/j.carbon.2016.02.028
  • 35. Kavian S, Azizi SN, Ghasemi S. Electrocatalytic detection of hydrazine on synthesized nanozeolite-supported Ag nanoparticle-modified carbon paste electrode at a negative potential in an alkaline medium. Journal of Molecular Liquids 2016; 218: 663-669. doi: 10.1016/j. molliq.2016.02.090
  • 36. Ghanbari K. Fabrication of silver nanoparticles-polypyrrole composite modified electrode for electrocatalytic oxidation of hydrazine. Synthetic Metals 2014;195:234-240. doi: 10.1016/j.synthmet.2014.06.014
  • 37. Ji X, Banks CE, Holloway AF, Jurkschat K,Thorogood CA et al. Palladium sub-nanoparticle decorated “bamboo” multi-walled carbon nanotubes exhibit electrochemical metastability: voltammetric sensing in otherwise inaccessible pH ranges. Electroanalysis 2006; 18 (24): 2481-2485. doi: 10.1002/elan.200603681
  • 38. Gholivand MB, Azadbakht A. Fabrication of a highly sensitive glucose electrochemical sensor based on immobilization of Ni(II)- pyromellitic acid and bimetallic Au-Pt inorganic-organic hybrid nanocomposite onto carbon nanotube modified glassy carbon electrode. Electrochimica Acta 2012; 76: 300-311. doi: 10.1016/j.electacta.2012.05.037
  • 39. Koçak S, Altın A, Koçak ÇC. Electrochemical determination of hydrazine at gold and platinum nanoparticles modified poly(L-serine) glassy carbon electrodes. Analytical Letters 2016; 49 (7): 1015-1031. doi: 10.1080/00032719.2015.1045586