Size-controllable carbon spheres doped Ni (II) for enhancing the catalytic oxidation of methanol

Size-controllable carbon spheres doped Ni (II) for enhancing the catalytic oxidation of methanol

Ni(II)/CSs were prepared using a simple two-step hydrothermal method. The morphology and composition of the catalysts were studied with scanning electron microscope, transmission electron microscope, and X-ray diffraction. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the surface of the prepared carbon spheres was rich in hydroxyl groups, which was beneficial to remove CO intermediates, and therefore, improving the catalytic efficiency and the antipoisoning ability of the catalysts. The results of cyclic voltammetry and chronoamperometry showed that the electrocatalytic activity and stability of Ni(II)/CSs were higher than that of unloaded NiAc under alkaline environment. When the nickel content was 5 wt.%, the peak oxidation current density of methanol on Ni(II)/CSs electrocatalyst reached the maximum of 34.54 mA/cm2 , which was about 1.8 times that of unloaded NiAc. These results indicate that Ni(II)/CSs has potential applications in the electrocatalytic oxidation of methanol.

___

  • 1. Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF et al. Materials for solar fuels and chemicals. Nature Materials 2017; 16 (1): 70-81. doi: 10.1038/nmat4778
  • 2. Cheng F, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews 2012; 41 (6): 2172-2192. doi: 10.1039/c1cs15228a
  • 3. Lyu F, Yu S, Li M, Wang Z, Nan B et al. Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as highperformance anode materials for Li-ion batteries. Chemical Communications 2017; 53 (13): 2138-2141. doi: 10.1039/c6cc09702b
  • 4. Feng Y, Liu H, Yang J. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Science Advances 2017; 3 (6): e1700580. doi: 10.1126/sciadv.1700580
  • 5. Wang Z-L, Xu D, Xu J-J, Zhang X-B. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews 2014; 43 (22): 7746-7786. doi: 10.1039/c3cs60248f
  • 6. Li G, Pickup PG. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode. Journal of Power Sources 2006; 161 (1): 256-263. doi: 10.1016/j.jpowsour.2006.03.071
  • 7. Hasan M, Newcomb SB, Rohan JF, Razeeb KM. Ni nanowire supported 3D flower-like Pd nanostructures as an efficient electrocatalyst for electrooxidation of ethanol in alkaline media. Journal of Power Sources 2012; 218: 148-156. doi: 10.1016/j.jpowsour.2012.06.017
  • 8. Zhu LD, Zhao TS, Xu JB, Liang ZX. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media. Journal of Power Sources 2009; 187 (1): 80-84. doi: 10.1016/j. jpowsour.2008.10.089
  • 9. Rossmeisl J, Ferrin P, Tritsaris GA, Nilekar AU, Koh S et al. Bifunctional anode catalysts for direct methanol fuel cells. Energy & Environmental Science 2012; 5 (8): 8335-8342. doi: 10.1039/c2ee21455e
  • 10. Yang Y, Luo L-M, Zhang R-H, Du J-J, Shen P-C et al. Free-standing ternary PtPdRu nanocatalysts with enhanced activity and durability for methanol electrooxidation. Electrochimica Acta 2016; 222: 1094-1102. doi: 10.1016/j.electacta.2016.11.080
  • 11. Zhan G, Fu Z, Sun D, Pan Z, Xiao Z et al. Platinum nanoparticles decorated robust binary transition metal nitride-carbon nanotubes hybrid as an efficient electrocatalyst for the methanol oxidation reaction. Journal of Power Sources 2016; 326: 84-92. doi: 10.1016/j. jpowsour.2016.06.112
  • 12. Sevilla M, Fuertes AB. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009; 47 (9): 2281-2289. doi: 10.1016/j.carbon.2009.04.026
  • 13. Yu M, Chen J, Liu J, Li S, Ma Y et al. Mesoporous $NiCo_2O_4$ nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochimica Acta 2015; 151: 99-108. doi: 10.1016/j.electacta.2014.10.156
  • 14. Dong B, Li W, Huang XX, Ali Z, Zhang T et al. Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy 2019; 55: 37-41. doi: 10.1016/j.nanoen.2018.10.050
  • 15. Ghouri ZK, Barakat NAM, Obaid M, Lee JH, Kim HY. $Co/CeO_2$ -decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium. Ceram International 2015; 41 (2): 2271-2278. doi: 10.1016/j.ceramint.2014.10.031
  • 16. Jothi PR, Kannan S, Velayutham G. Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one dimensional$NiMoO_4$ nanorods. Journal of Power Sources 2015; 277: 350-359. doi: 10.1016/j.jpowsour.2014.11.137
  • 17. Song M-C, Zhang R-H, Zhang X-F, Zhao C-Y, Cui X-M et al. Effect of chromium addition on microstructures and electrochemicalproperties of $V_2.1TiNiO_3$ alloy. Chinese Journal of Inorganic Chemistry 2016; 32 (6): 975-982. doi: 10.11862/cjic.2016.124
  • 18. Wu N, Liu X, Zhao C, Cui C, Xia A. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. Journal of Alloys and Compounds 2016; 656: 628-634. doi: 10.1016/j.jallcom.2015.10.027
  • 19. Sneed BT, Young AP, Jalalpoor D, Golden MC, Mao SJ et al. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles: influence of ni sandwich layers on catalytic electrooxidations. Acs Nano 2014; 8 (7): 7239-7250. doi: 10.1021/nn502259g
  • 20. Rahim MAA, Hameed RMA, Khalil MW. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. Journal of Power Sources 2004; 134 (2): 160-169. doi: 10.1016/j.jpowsour.2004.02.034
  • 21. Barakat NAM, Yassin MA, Al-Mubaddel FS, Amen MT. New electrooxidation characteristic for Ni-based electrodes for wide application in methanol fuel cells. Applied Catalysis A, General 2018; 555: 148-154. doi: 10.1016/j.apcata.2018.02.016
  • 22. Cheng Y, Xu C, Shen PK, Jiang SP. Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells. Applied Catalysis B-Environmental 2014; 158: 140-149. doi: 10.1016/j. apcatb.2014.04.017
  • 23. Nassr AAA, Sinev I, Pohl MM, Grunert W, Bron M. Rapid Microwave-Assisted Polyol Reduction for the Preparation of Highly Active PtNi/CNT Electrocatalysts for Methanol Oxidation. ACS Catalysis 2014; 4 (8): 2449-2462. doi: 10.1021/cs401140g
  • 24. Barakat NAM, El-Newehy M, Al-Deyab SS, Kim HY. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation. Nanoscale Research Letters 2014; 9: 2. doi: 10.1186/1556-276x-9-2
  • 25. Hu GZ, Nitze F, Barzegar HR, Sharifi T, Mikolajczuk A et al. Palladium nanocrystals supported on helical carbon nanofibers for highly efficient electro-oxidation of formic acid, methanol and ethanol in alkaline electrolytes. Journal of Power Sources 2012; 209: 236-242. doi: 10.1016/j.jpowsour.2012.02.080
  • 26. Zhang YM, Liu Y, Liu WH, Li XY, Mao LQ. Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media. Applied Surface Science 2017; 407: 64-71. doi: 10.1016/j.apsusc.2017.02.158
  • 27. Zhai CP, Li SS, Wang JH, Liu Y. Nitrogen-doped porous carbon sphere supported Pt nanoparticles for methanol and ethanol electrooxidation in alkaline media. RSC Advances 2018; 8 (63): 36353-36359. doi: 10.1039/c8ra07848c
  • 28. Li K, Jin Z, Ge JJ, Liu CP, Xing W. Platinum nanoparticles partially-embedded into carbon sphere surfaces: a low metal-loading anode catalyst with superior performance for direct methanol fuel cells. Journal of Materials Chemistry A 2017; 5 (37): 19857-19865. doi: 10.1039/c7ta06700c
  • 29. Wang Q, Li H, Chen LQ, Huang XJ. Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001; 39 (14): 2211-2214. doi: 10.1016/s0008-6223(01)00040-9
  • 30. Hu B, Wang K, Wu L, Yu S-H, Antonietti M et al. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials 2010; 22 (7): 813-828. doi: 10.1002/adma.200902812
  • 31. Titirici M-M, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews 2010; 39 (1): 103-116. doi: 10.1039/b819318p
  • 32. Sevilla M, Fuertes AB. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chemistry-A European Journal 2009; 15 (16): 4195-4203. doi: 10.1002/chem.200802097
  • 33. Ryu J, Suh Y-W, Suh DJ, Ahn DJ. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 2010; 48 (7): 1990-1998. doi: 10.1016/j.carbon.2010.02.006.
  • 34. Li M, Li W, Liu S. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydrate Research 2011; 346 (8): 999-1004. doi: 10.1016/j.carres.2011.03.020
  • 35. Kang S, Li X, Fan J, Chang J. Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, D-Xylose, and Wood Meal. Industrial & Engineering Chemistry Research 2012; 51 (26): 9023-9031. doi: 10.1021/ie300565d
  • 36. You B, Wang L, Yao L, Yang J. Three dimensional N-doped graphene-CNT networks for supercapacitor. Chemical Communications 2013; 49 (44): 5016-5018. doi: 10.1039/c3cc41949e
  • 37. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G. Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. Advanced Energy Materials 2011; 1 (3): 356-361. doi: 10.1002/aenm.201100019
  • 38. Yu H, Gu L, Wu S, Dong G, Qiao X et al. Hydrothermal carbon nanospheres assisted-fabrication of PVDF ultrafiltration membranes with improved hydrophilicity and antifouling performance. Separation and Purification Technology 2020; 247: 116889. doi: 10.1016/j. seppur.2020.116889
  • 39. Gu YY, Gao PY, Yu ZZ, Hu YF, Xu Z et al. Honeycomb-like Mesoporous $NiO-SnO_2 /SO_4^{2}- Solid Superacid for the Efficient Reaction of Methanol Oxidation. International Journal of Electrochemical Science 2020; 15 (3): 2481-2498. doi: 10.20964/2020.03.41
  • 40. Yu X, Zhang K, Tian N, Qin A, Liao L et al. Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries. Materials Letters 2015; 142: 193-196. doi: 10.1016/j.matlet.2014.11.160
  • 41. Yu J, Ni Y, Zhai M. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation. Journal of Physics and Chemistry of Solids 2018; 112: 119-126. doi: 10.1016/j.jpcs.2017.09.022
  • 42. Sun H, Xu G-L, Xu Y-F, Sun S-G, Zhang X-F et al. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Research 2012; 5 (10): 726-738. doi: 10.1007/s12274-012-0257-7
  • 43. Wu L, Zhou Y, Nie W, Song L, Chen P. Synthesis of highly monodispersed teardrop-shaped core-shell $SiO_2/TiO_2$ nanoparticles and their photocatalytic activities. Applied Surface Science 2015; 351: 320-326. doi: 10.1016/j.apsusc.2015.05.152
  • 44. Qian W, Gao Q, Zhang H, Tian W, Li Z et al. Crosslinked Polypyrrole Grafted Reduced Graphene Oxide-Sulfur Nanocomposite Cathode for High Performance Li-S Battery. Electrochimica Acta 2017; 235: 32-41. doi: 10.1016/j.electacta.2017.03.063
  • 45. Ulas B, Caglar A, Sahin O, Kivrak H. Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. Journal of Colloid and Interface Science 2018; 532: 47-57. doi: 10.1016/j.jcis.2018.07.120
  • 46. Zhang C, Qian LH, Zhang K, Yuan SL, Xiao JW et al. Hierarchical porous Ni/NiO core-shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. Journal of Materials Chemistry A 2015; 3 (19): 10519-10525. doi: 10.1039/c5ta01071c
  • 47. Hameed RMA. Microwave irradiated Ni-MnOx/C as an electrocatalyst for methanol oxidation in KOH solution for fuel cell application. Applied Surface Science 2015; 357: 417-428. doi: 10.1016/j.apsusc.2015.08.201
  • 48. Gu Y, Luo J, Liu Y, Yang H, Ouyang R et al. Synthesis of Bimetallic Ni-Cr Nano-Oxides as Catalysts for Methanol Oxidation in NaOH Solution. Journal of Nanoscience and Nanotechnology 2015; 15 (5): 3743-3749. doi: 10.1166/jnn.2015.9528
  • 49. Chen ST, Wu HB, Tao J, Xin HL, Zhu YM et al. Pt-Ni seed-core-frame hierarchical nanostructures and their conversion to nanoframes for enhanced methanol electro-oxidation. Catalysts 2019; 9 (1): 15. doi: 10.3390/catal9010039
  • 50. Liu X-J, Sun Y-D, Yin X, Jia C, Ma M et al. Enhanced methanol electrooxidation over defect-rich Pt-M (M = Fe, Co, Ni) ultrathin nanowires. Energy & Fuels 2020; 34 (8): 10078-10086. doi: 10.1021/acs.energyfuels.0c01850
  • 51. Yin SL, Wang ZQ, Li CJ, Yu HJ, Deng K et al. Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electrooxidation. Nanoscale Advances 2020; 2 (3): 1084-1089. doi: 10.1039/d0na00020e
  • 52. Yaqoob L, Noor T, Iqbal N, Nasir H, Zaman N. Development of Nickel-BTC-MOF-Derived nanocomposites with rGO towards electrocatalytic oxidation of methanol and its product analysis. Catalysts 2019; 9 (10): 21. doi: 10.3390/catal9100856
  • 53. Wang TJ, Huang H, Wu XR, Yao HC, Li FM et al. Self-template synthesis of defect-rich NiO nanotubes as efficient electrocatalysts for methanol oxidation reaction. Nanoscale 2019; 11 (42): 19783-19790. doi: 10.1039/c9nr06304h
  • 54. Wang BR, Cao Y, Chen Y, Wang RZ, Wang XH et al. Microwave-assisted fast synthesis of hierarchical $NiCo_2O_4$ nanoflower-like supportedNi$(OH)_2$ nanoparticles with an enhanced electrocatalytic activity towards methanol oxidation. Inorganic Chemistry Frontiers 2018; 5 (1):172-182. doi: 10.1039/c7qi00583k
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Investigation of Olea ferruginea Roylebark extracts for potential in vitro antidiabetic and anticancer effects

Samra LIAQAT, Muhammad ISLAM, Mehwish IQTEDAR, Hamid SAEED, Azra MEHMOOD

First determination of some phenolic compounds and antimicrobial activities of Geranium ibericum subsp. jubatum: A plant endemic to Turkey

Mehmet Emin ŞEKER, Ayça AKTAŞ KARAÇELİK, Derya EFE, Emriye AY, Rena HÜSEYİNOĞLU

Gokhan DİKMEN, Okan USLU

Size-controllable carbon spheres doped Ni (II) for enhancing the catalytic oxidation of methanol

Yifen HU, Pengyu GAO, Yingying GU, Chuan ZHANG, Lizhen HUANG, Yunting HU, Yarui AN, Zhen XU

Ayse UGUR, Sukru Gokhan ELCİ, Doğangün YÜKSEL

$CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis

Bahar İPEK, Cansu TUYGUN

Abdullah ABDULLAH, Esra ALVEROGLU DURUCU, Aamna BALOUCH, Ali Muhammad MAHAR

Validation of HPLC method for the determination of chemical and radiochemical purity of a $^{68}Ga-labelled EuK-Sub-kf-(3-iodo-y-) DOTAGA$

Ayşe UĞUR, Şükrü Gökhan ELÇİ, Doğangün YÜKSEL

New chlorogenic acid derivatives and triterpenoids from Scorzonera aucheriana

Serdar MAKBUL, İshak ERİK, Kamil COŞKUNÇELEBİ

Synthesis of 7,12-bis(4-(di(1H-pyrrol-2-yl)methyl)phenyl)benzo[k]fluoranthene from a new dialdehyde as a novel fluorometric bis-Dipyrromethane derivative

Salar HEMMATI, Faride RANJBARI, Mohammad Reza RASHIDI