Investigation of Olea ferruginea Roylebark extracts for potential in vitro antidiabetic and anticancer effects

Investigation of Olea ferruginea Roylebark extracts for potential in vitro antidiabetic and anticancer effects

This study was conducted to investigate the physicochemical, phytochemical, in vitro antidiabetic and anticancer potential of Olea ferruginea R bark. After extraction using Soxhlet, in vitro antidiabetic and cytotoxic activity on human hepatocellular carcinoma (HepG2) cells was assessed by nonenzymatic glycosylation of hemoglobin assay, alpha-amylase inhibition assay, glucose uptake by yeast cells, and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, respectively, and gene expression via real-time polymerase chain reaction. Primary and secondary metabolites were present in the extractants; polyphenols (35.61 ± 0.03) and flavonoids (64.33 ± 0.35) in the chloroform; and polysaccharides in the ethanol (268.75 ± 0.34), and glycosaponins (78.01 ± 0.07) in the methanol. The chloroform extract exhibited maximum antidiabetic potential, showing inhibition of nonenzymatic glycosylation of hemoglobin (65%), and alpha-amylase inhibition (32%) with maximum percent glucose uptake by the ethanol extract (78%). Only the ethanol extract had dose-dependent cytotoxic potential against the HepG2 cells. After 24-h exposure to the ethanol-extract, the expression of protein kinase B (Akt) remained unchanged, while the expression of B-cell lymphoma 2 (BCL2) and BCL2 associated X (BAX) changed significantly. After 48-h exposure, the expression of Akt decreased significantly, while that of BCL2 and BAX increased significantly. Olea ferruginea R bark possessed in vitro antidiabetic potential and anticancer/cytotoxic effects, attributable to the decline in the prosurvival signals of the Akt signaling pathway.

___

  • 1. Hussain W, Ullah M, Dastagir G, Badshah L. Quantitative ethnobotanical appraisal of medicinal plants used by inhabitants of lower Kurram, Kurram agency, Pakistan. Avicenna Journal of Phytomedicine 2018; 8 (4): 313-329.
  • 2. Farnsworth NR. Screening plants for new medicines. In: Wilson EO, Frances MP (editors). Biodiversity. Washington, DC, USA: National Academies Press, 1988, pp. 81-99.
  • 3. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives 2001; 109 (1): 69-75.
  • 4. Gewali MB, Awale S. Aspects of Traditional Medicine in Nepal. Japan: Institute of Natural Medicine University of Toyama, 2008.
  • 5. Shinwari ZK, Qaiser M. Efforts on conservation and sustainable use of medicinal plants of Pakistan. Pakistan Journal of Botany 2011; 43 (1): 5-10.
  • 6. Ahmed M. Some medicinal plant resources and traditional uses in Pakistan. Journal of Plant Breeding and Crop Science 2015; 7 (5): 158- 162. doi: 10.5897/JPBC2014.0488
  • 7. Shinwari ZK. Medicinal plants research in Pakistan. Journal of medicinal plants research 2010; 4 (3): 161-176. doi: 10.5897/JMPR.9000872.
  • 8. Ashraf U, Ali H, Chaudry MN, Ashraf I, Batool A et al. Predicting the potential distribution of Olea ferruginea in Pakistan incorporating climate change by using Maxent model. Sustainability 2016; 8 (8): 722. doi: 10.3390/su8080722
  • 9. Ahmed M, Khan N, Wahab M, Hamza S, Siddiqui MF et al. Vegetation structure of Olea ferruginea Royle forests of lower Dir district of Pakistan. Pakistan Journal of Botany 2009; 41 (6): 2683-2695.
  • 10. Besnard G, Green PS, Bervillé A. The genus Olea: molecular approaches of its structure and relationships to other Oleaceae. Acta Botanica Gallica 2002; 149: 49-66. doi: 10.1080/12538078.2002.10515928
  • 11. Hashmi MA, Khan A, Ayub K, Farooq U. Spectroscopic and density functional theory studies of 5, 7, 3′, 5′-tetrahydroxyflavanone from the leaves of Olea ferruginea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 128: 225-230. doi: 10.1016/j. saa.2014.02.163
  • 12. Pandita D, Pandita A, Pandita S. The revitalizing and recuperative higher Tracheophytes of Jammu province, Jammu and Kashmir (India). International Journal of Indigenous Medicinal Plants 2014; 47 (1): 1603-1620.
  • 13 Ahmad M, Qureshi R, Arshad M, Khan MA, Zafar M. Traditional herbal remedies used for the treatment of diabetes from district Attock (Pakistan). Pakistan Journal of Botany 2009; 41 (6): 2777-2782.
  • 14. Shah SA, Shah NA, Ullah S, Alam MM, Badshah H et al. Documenting the indigenous knowledge on medicinal flora from communities residing near Swat River (Suvastu) and in high mountainous areas in Swat-Pakistan. Journal of ethnopharmacology 2016; 182: 67-79. doi: 10.1016/j.jep.2016.02.008
  • 15. Ahmed A, Gulfraz M, Asad MJ, Qureshi R, Bibi S et al. Hypoglycemic and hypocholesterolemic activity of leave of few medicinal plants against steptozotocin induced hyperglycemia. Pakistan Journal of Pharmaceutical Sciences 2016; 29 (6): 2065-2070.
  • 16. Hashmi MA, Shah HS, Khan A, Farooq U, Iqbal J et al. Anticancer and alkaline phosphatase inhibitory effects of compounds isolated from the leaves of Olea ferruginea Royle. Records of Natural Products 2015; 9 (1): 164-168.
  • 17. Sultana N, Ata A. Oleanolic acid and related derivatives as medicinally important compounds. Journal of enzyme inhibition and medicinal chemistry 2008; 23 (6): 739-756. doi: 10.1080/14756360701633187
  • 18. Caltana L, Rutolo D, Nieto ML, Brusco A. Further evidence for the neuroprotective role of oleanolic acid in a model of focal brain hypoxia in rats. Neurochemistry international 2014; 79: 79-87. doi: 10.1016/j.neuint.2014.09.011
  • 19. Sharma RK, Sharma N, Samant SS, Nandi SK, Palni LMS. Antioxidant activities in methanolic extracts of Olea ferruginea Royle fruits. International Journal of Bioscience, Biochemistry and Bioinformatics 2013; 3(2): 154-156. doi: 10.7763/IJBBB.2013.V3.185
  • 20. Ahmad KR, Sial B, Amiruddin U, Bilal MA, Raees K et al. Hepato-curative and regenerative potentials of wild olive (Olea ferruginea) fruit pulp extracts against fluorideinduced toxicity in mice: a histopathological study. Fluoride 2016; 49 (2): 112-117.
  • 21. Mehmood A, Murtaza G. Phenolic contents, antimicrobial and antioxidant activity of Olea ferruginea Royle (Oleaceae). BMC complementary and alternative medicine 2018; 18 (1): 173. doi: 10.1186/s12906-018-2239-0
  • 22. Zafar S, -Ur-Rehman F, Shah ZA, Rauf A, Khan A et al. Potent leishmanicidal and antibacterial metabolites from Olea ferruginea. Journal of Asian natural products research 2018; 21 (7): 679-687. doi: 10.1080/10286020.2018.1467894
  • 23. Yusuf A. Cancer care in Pakistan. Japanese Journal of Clinical Oncology 2013; 43 (8): 771-775. doi: 10.1093/jjco/hyt078
  • 24. Bahadar H, Mostafalou S, Abdollahi M. Growing burden of diabetes in Pakistan and the possible role of arsenic and pesticides. Journal of Diabetes & Metabolic Disorders 2014; 13: 117. doi: 10.1186/s40200-014-0117-y
  • 25. Saleem B, Islam M, Saeed H, Imtiaz F, Asghar M et al. Investigations of Acaciamodesta Wall. leaves for in vitro anti-diabetic, proliferative and cytotoxic effects. Brazilian Journal of Pharmaceutical Sciences 2018; 54 (2). doi: 10.1590/s217597902018000217467
  • 26. Ayeni M, Oyeyemi S, Kayode J, Peter G. Phytochemical, proximate and mineral analyses of the leaves of Gossypium hirsutum L. and Momordica charantia L. Journal of Natural Sciences Research 2015; 5 (6): 99-107.
  • 27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 1951; 193 (1): 265-275.
  • 28. Besbes S, Blecker C, Deroanne C, Drira NE, Attia H. Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chemistry 2004; 84 (4): 577-584. doi:10.1016/S0308-8146(03)00281-4
  • 29. Al-Hooti S, Sidhu S, Gabazard H. Chemical composition of seeds of date fruit cultivars of United Arab Emirates. Journal of Food Science and Technology 1998; 35 (1): 44-46.
  • 30. Slinkard K, Singleton VL. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture 1977; 28: 49-55.
  • 31. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 2002; 10 (3): 178-182.
  • 32. Hussain K, Ismail Z, Sadikun A, Ibrahim P. Analysis of proteins, polysaccharides, glycosaponins contents of Piper sarmentosum Roxb. and anti-TB evaluation for bio-enhancing/interaction effects of leaf extracts with Isoniazid (INH). Natural Product Radiance 2008; 7 (5): 402- 408.
  • 33. Adisa RA, Oke J, Olomu SA, Olorunsogo O. Inhibition of human haemoglobin glycosylation by flavonoid containing leaf extracts of Cnestis ferruginea. Journal of the Cameroon Academy of Sciences 2004; 4: 351-359.
  • 34. Parker KM, England J, Da Costa J, Hess R, Goldstein D. Improved colorimetric assay for glycosylated hemoglobin. Clinical Chemistry 1981; 27 (5): 669-672.
  • 35. Kwon GJ, Choi DS, Wang MH. Biological activities of hot water extracts from Euonymus alatus leaf. Korean Journal of Food Science and Technology 2007; 39 (5): 569-574.
  • 36. Bhutkar M, Bhise S. In vitro hypoglycemic effects of Albizzia lebbeck and Mucunapruriens. Asian Pacific journal of tropical biomedicine 2013; 3 (11): 866-870. doi: 10.1016/S2221-1691(13)60170-7
  • 37. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods 1983; 65 (1-2): 55-63.doi: 10.1016/0022-1759(83)90303-4
  • 38. Saeed H, Abdallah BM, Ditzel N, Catala‐Lehnen P, Qiu W et al. Telomerase‐deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. Journal of Bone and Mineral Research 2011; 26 (7): 1494-1505. doi: 10.1002/jbmr.349
  • 39. Ahmad A, Husain A, Mujeeb M, Siddiqui NA, Damanhouri ZA et al. Physicochemical and phytochemical standardization with HPTLC fingerprinting of Nigella sativa L. seeds. Pakistan Journal of Pharmaceutical Sciences 2014; 27 (5): 1175-1182.
  • 40. Jemai H, El Feki A, Sayadi S. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. Journal of Agricultural and Food Chemistry 2009; 57 (19): 8798-8804. doi: 10.1021/jf901280r
  • 41. Snyder RW, Berns JS. Reviews: use of insulin and oral hypoglycemic medications in patients with diabetes mellitus and advanced kidney disease. Seminars in Dialysis 2004; 17 (5): 365-370. doi: 10.1111/j.0894-0959.2004.17346.x
  • 42. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA oncology 2017; 3 (4): 524-548. doi: 10.1001/jamaoncol.2016.5688
  • 43. Gavamukulya Y, Abou-Elella F, Wamunyokoli F, AEl-Shemy H. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pacific Journal of Tropical Medicine 2014; 7 (1): S355-S363. doi: 10.1016/S1995-7645(14)60258-3
  • 44. Greenwell M, Rahman P. Medicinal plants: their use in anticancer treatment. International journal of pharmaceutical sciences and research 2015; 6 (10): 4103-4112. doi: 10.13040/IJPSR.0975-8232.6(10).4103-12
  • 45. Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica Drug - Research 2010; 67 (2): 113- 118.
  • 46. Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Current Diabetes Reviews 2012; 8 (2): 92-108. doi: 10.2174/157339912799424528
  • 47. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. Journal of Food and Drug Analysis 2017; 25 (1): 84-92. doi: 10.1016/j.jfda.2016.10.017
  • 48. Wu CH, Huang SM, Lin JA, Yen GC. Inhibition of advanced glycation endproduct formation by foodstuffs. Food & Function 2011; 2 (5): 224-234. doi: 10.1039/c1fo10026b
  • 49. Ademiluyi AO, Oboh G. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology 2013; 65 (3): 305-309. doi: 10.1016/j. etp.2011.09.005
  • 50. Xiao J, Hogger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Current Medicinal Chemistry 2015; 22 (1): 23-38.doi: 10.2174/0929867321666140706130807
  • 51. Solayman M, Ali Y, Alam F, Islam A, Alam N et al. Polyphenols: potential future arsenals in the treatment of diabetes. Current Pharmaceutical Design 2016; 22 (5): 549-565. doi: 10.2174/1381612822666151125001111
  • 52. Dembinska-Kiec A, Mykkänen O, Kiec-Wilk B, Mykkänen H. Antioxidant phytochemicals against type 2 diabetes. British Journal of Nutrition 2008; 99 (1): ES109-ES117. doi: 10.1017/S000711450896579X
  • 53. Meng Y, Wang W, Kang J, Wang X, Sun L. Role of the PI3K/AKT signalling pathway in apoptotic cell death in the cerebral cortex of streptozotocin-induced diabetic rats. Experimental and Therapeutic Medicine 2017; 13 (5): 2417-2422. doi: 10.3892/etm.2017.4259
  • 54. Zong A, Cao H, Wang F. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydrate Polymers 2012; 90 (4): 1395-1410. doi: 10.1016/j.carbpol.2012.07.026
  • 55. Xu H, Xu X. Polysaccharide, a potential anti-cancer drug with high efficacy and safety. Journal of Oncology Research and Treatments 2016; 1 (2): 2.
  • 56. Calvo E, Bolós V, Grande E. Multiple roles and therapeutic implications of Akt signaling in cancer. Onco Targets and Therapy 2009; 2: 135-150. doi: 10.2147/ott.s4943
  • 57. Steelman L, Pohnert S, Shelton J, Franklin R, Bertrand F et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18 (2): 189-218. doi: 10.1038/sj.leu.2403241
  • 58. Kirkin V, Joos S, Zörnig M. The role of Bcl-2 family members in tumorigenesis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2004; 1644 (2-3): 229-249. doi: 10.1016/j.bbamcr.2003.08.009
  • 59. Kim BJ, Ryu SW, Song BJ. JNK-and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. Journal of Biological Chemistry 2006; 281 (30): 21256-21265. doi: 10.1074/jbc. M510644200
  • 60. Reed JC. Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death and Differentiation 2006; 13 (8): 1378-1386. doi: 10.1038/sj.cdd.4401975