Protonation behavior of dextran amino acid esters

Protonation behavior of dextran amino acid esters

Dextran esters of different amino acids (glycine, β -alanine, L-ornithine, L-lysine) are investigated regardingtheir pKa values by potentiometric titration. The pKa values of the dextran derivatives are generally dependent onthe position of the amino group in relation to the ester group, i.e. the nearer they are located in the molecule, thelower the resulting pKa values are, L-ornithine ester being the exception. An influence of the polymer backbone is ruled out. Stability against hydrolysis at different pH values and over longer periods at constant pH value is measured by potentiometric and polyelectrolyte titration. The β -alanine ester shows slowest hydrolysis at alkaline pH values, starting at a pH value of 8. The esters investigated are polycations at physiological pH values; thus, the charging properties are essential for using these esters as nonviral vectors in gene delivery.

___

  • 1. Sivakami MS, Gomathi T, Venkatesan J, Jeong HS, Kim SK et al. Preparation and characterization of nano chitosan for treatment wastewaters. International Journal of Biological Macromolecules 2013; 57: 204-212. doi: 10.1016/j.ijbiomac.2013.03.005
  • 2. Mu H, Guo F, Niu H, Liu Q, Wang S et al. Chitosan improves anti-biofilm efficacy of gentamicin through facilitating antibiotic penetration. International Journal of Molecular Sciences 2014; 15: 22296-22308. doi: 10.3390/ijms151222296
  • 3. Hu H, Yuan W, Liu FS, Cheng G, Xu FJ et al. Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS Applied Materials & Interfaces 2015; 7: 8942-8951. doi: 10.1021/acsami.5b02432
  • 4. Klimaviciute R, Bendoraitiene J, Rutkaite R, Siugzdaite J, Zemaitaitis A. Preparation, stability and antimicrobial activity of cationic cross-linked starch-iodine complexes. International Journal of Biological Macromolecules 2012; 51: 800-807. doi: 10.1016/j.ijbiomac.2012.07.025
  • 5. Li WB, Yuan W, Xu FJ, Zhao C, Ma J et al. Functional study of dextran-graft-poly((2-dimethyl amino)ethyl methacrylate) gene delivery vector for tumor therapy. Journal of Biomaterials Applications 2013; 28: 125-135. doi: 10.1177/0885328212440345
  • 6. Eliyahu H, Makovitzki A, Azzam T, Zlotkin A, Joseph A et al. Novel dextran-spermine conjugates as transfecting agents: comparing water-soluble and micellar polymers. Gene Therapy 2005; 12: 494-503. doi: 10.1038/sj.gt.3302395
  • 7. Rosenfeld EL, Lukomskaya IS. The splitting of dextran and isomaltose by animal tissues. Clinica Chimica Acta 1957; 2: 105-114. doi: 10.1016/0009-8981(57)90090-6
  • 8. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chemical Reviews 2009; 109: 259-302. doi: 10.1021/cr800409e
  • 9. Cho YW, Kim JD, Park K. Polycation gene delivery systems: escape from endosomes to cytosol. Journal of Pharmacy and Pharmacology 2003; 55: 721-734. doi: 10.1211/002235703765951311
  • 10. Hunter AC, Moghimi SM. Cationic carriers of genetic material and cell death: a mitochondrial tale. Biochimica et Biophysica Acta 2010; 1797: 1203-1209. doi: 10.1016/j.bbabio.2010.03.026
  • 11. Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. Journal of Biological Chemistry 1987; 262: 4429-4432.
  • 12. Hotzel K. Neue Dextranderivate als nicht-virale Vektoren im Gentransfer. PhD, Friedrich Schiller University of Jena, Jena, Germany, 2017 (in German).
  • 13. Keller O, Keller WE, van Look G, Wersin G. tert-Butoxycarbonylation of amino acids and their derivatives: N-tert-butoxycarbonyl-L-phenylalanine (L-phenylalanine, N-[(1,1-dimethylethoxy)carbonyl]-). Organic Syntheses 1985; 63: 160-170. doi: 10.15227/orgsyn.063.0160
  • 14. Zarth CSP, Zemljic LF, Cakara D, Bracic M, Pfeifer A et al. Charging behavior and stability of the novel amino group containing cellulose ester cellulose-4-[N-methylamino]butyrate hydrochloride. Macromolecular Chemistry and Physics 2012; 213: 1669-1676. doi: 10.1002/macp.201200057
  • 15. Zemljic LF, Cakara D, Michaelis N, Heinze T, Kleinschek KS. Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose 2011; 18: 33-43. doi: 10.1007/s10570-010-9467-x
  • 16. Genco T, Zemljič LF, Bračič M, Stana-Kleinschek K, Heinze T. Physicochemical properties and bioactivity of a novel class of cellulosics: 6-deoxy-6-amino cellulose sulfate. Macromolecular Chemistry and Physics 2012; 213: 539-548. doi: 10.1002/macp.201100571
  • 17. Fischer D, Heinze T, Zink M, Hotzel K. DE102014016901A1. Jena, Germany: Friedrich Schiller University of Jena, 2016.
  • 18. Hay RW, Morris PJ. Proton ionization constants and kinetics of base hydrolysis of α-amino acid esters in aqueous solution. III. Hydrolysis and intramolecular aminolysis of α, ω-diamino acid methyl esters. Journal of the Chemical Society, Perkin Transactions 2 1972: 1021-1029. doi: 10.1039/P29720001021
  • 19. Hay RW, Porter LJ, Morris PJ. Basic hydrolysis of amino acid esters. Australian Journal of Chemistry 1966; 19: 1197-1205. doi: 10.1071/CH9661197
  • 20. Dawson RMC, Elliott DC, Elliott WH, Jones KM. Data for Biochemical Research. New York, NY, USA: Oxford Book Co., 1959.
  • 21. Purich DL, Allison RD. Handbook of Biochemical Kinetics: A Guide to Dynamic Processes in the Molecular Life Sciences. San Diego, CA, USA: Elsevier Science Publishing, 1999.
  • 22. Williams A, Jencks WP. Acid and base catalysis of urea synthesis. nonlinear Broensted plots consistent with a diffusion-controlled proton-transfer mechanism and the reactions of imidazole and N-methylimidazole with cyanic acid. Journal of the Chemical Society, Perkin Transactions 2 1974: 1760-1768. doi: 10.1039/P29740001760