A theoretical investigation on the activation of small molecules by a disilenide: a DFT prediction

A theoretical investigation on the activation of small molecules by a disilenide: a DFT prediction

Herein, we proposed several mechanistic scenarios for activation of small molecules (NH3 , CO2 , CS 2 , H2 ,CH4 , N2 , and N2 O) by a disilicon analogue of a vinyl anion (1H) using density functional theory (DFT) calculations.The DFT results established that all the possible reactions to yield a variety of potential products have an exergonicnature except for the activation of N2 with the obtained overall energy of ∆G = 33.6 kcal mol −1. Moreover, the highestexergonic character was ∆G = −95.8 kcal mol −1for N2 O. Therefore, the findings reveal that 1H can be considered asuitable candidate for activation of NH3 , CO2 , CS 2 , H2 , CH4 , and N2 O under metal-free conditions.

___

  • 1. Tolman, W. B. Activation of Small Molecules: Organometallic and Bioinorganic Perspective; Wiley: Weinheim, Germany, 2006.
  • 2. Erker, G.; Stephan, D. W. Frustrated Lewis Pairs II: Expanding the Scope; Springer-Verlag: Heidelberg, Germany, 2013.
  • 3. Aresta, M. Carbon Dioxide Recovery and Utilization; Kluwer: Dordrecht, the Netherlands, 2003.
  • 4. Liu, C. J.; Mallinson, R.; Aresta, M. Utilization of Greenhouse Gases; ACS: Washington, DC, USA, 2003.
  • 5. Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy; Wiley-VCH: Weinheim, Germany, 2006.
  • 6. Sakakura. T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365-2387.
  • 7. Lee, J. H.; Pink, M.; Tomaszewski, J.; Fan, H.; Caulton, K. G. J. Am. Chem. Soc. 2007, 129, 8706-8707.
  • 8. Tolman, W. B. Angew. Chem. Int. Ed. 2010, 49, 1018-1024.
  • 9. Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115-1133.
  • 10. Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259-272.
  • 11. Leitner, W. Coord. Chem. Rev. 1996, 155, 257-284.
  • 12. Shilov, A. E.; Shulpin, G. B. Chem. Rev. 1997, 97, 2879-2932.
  • 13. Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471-2526.
  • 14. Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675-5732.
  • 15. Algarra, A. G. Inorg. Chem. 2017, 56, 186-196.
  • 16. Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124-1126.
  • 17. Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880-1881.
  • 18. Mömming, C. M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2009, 48, 6643-6646.
  • 19. Otten, E.; Neu. E. C.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 9918-9919.
  • 20. Chase, P. A.; Stephan, D. W. Angew. Chem. Int. Ed. 2008, 47, 7433-7437.
  • 21. Spikes, G. H.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 12232-12233.
  • 22. Wang, Y.; Chen, M.; Xie, Y.; Wei, P.; Schaefer III, H. F.; Schleyer, P. V. R.; Robinson, G. H. Nat. Chem. 2015, 7, 509-513.
  • 23. Jana, A.; Schulzke, C.; Roesky, H. W. J. Am. Chem. Soc. 2009, 131, 4600-4601.
  • 24. Xi, R.; Sita, L. R. Inorg. Chim. Acta 1998, 270, 118-122.
  • 25. Sita, L. R.; Babcock, J. R.; Xi, R. J. Am. Chem. Soc. 1996, 118, 10912-10913.
  • 26. Babcock, J. R.; Liable-Sands, L.; Rheingold, A. L.; Sita, L. R. Organomet. 1999, 18, 4437-4441.
  • 27. Mück, F. M.; Baus, J. A.; Nutz, M.; Burschka, C.; Poater, J.; Bickelhaupt, F. M.; Tacke, R. Chem. Eur. J. 2015, 21, 16665-16672.
  • 28. Majumdar, M.; Omlor, I.; Yildiz, C. B.; Azizoglu, A.; Huch, V.; Scheschkewitz, D. Angew. Chem. Int. Ed. 2015, 54, 8746-8750.
  • 29. Yildiz, C. B.; Scheschkewitz, D. Organomet. 2017, 36, 3035-3042.
  • 30. Scheschkewitz, D. Angew. Chem. Int. Ed. 2004, 43, 2965-2967.
  • 31. Ichinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Organomet. 2004, 23, 3088-3090.
  • 32. Inoue, S.; Ichinohe, M.; Sekiguchi, A. Chem. Lett. 2005, 34, 1564-1565.
  • 33. Yamaguchi, T.; Ichinohe, M.; Sekiguchi, A. New J. Chem. 2010, 34, 1544-1546.
  • 34. Cowley, M. J.; Abersfelder, K.; White, A. J. P.; Majumdar, M.; Scheschkewitz, D. Chem. Commun. 2012, 48, 6595-6597.
  • 35. Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307, 1080-1082.
  • 36. Dell’Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampoloni, G. Chem. Rev. 2003, 103, 3857-3898.
  • 37. Louie, J. Curr. Org. Chem. 2005, 9, 605-623.
  • 38. Steeneveldt, R.; Berger, B.; Torp, T. A. Chem. Eng. Res. Des. 2006, 84, 739-763.
  • 39. Lee, C. H.; Laitar, D. S.; Mueller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2007, 129, 13802-13803.
  • 40. Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Senanayake, S. D.; Whiteand, M. G.; Chen, J. G. ACS Catal. 2015, 5, 6696-6706.
  • 41. Dietz, L.; Piccininand, S.; Maestri, M. J. Phys. Chem. C 2015, 119, 4959-4966.
  • 42. Li, J.; Hermann, M.; Frenking, G.; Jones, C. Angew. Chem. Int. Ed. 2012, 51, 8611-8614.
  • 43. Neu, R. C.; Otten, E.; Lough, A.; Stephan, D. W. Chem. Sci. 2011, 2, 170-176.
  • 44. Dureen, A.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 13559-13568.
  • 45. Hermann, M.; Frenking, G.; Jones, C. Inorg. Chem. 2014, 53, 6482-6490.
  • 46. Ma, G.; Li, Z. H. Phys. Chem. Chem. Phys. 2016, 18, 11539-11549.
  • 47. Allen, A. D.; Senoff, C. V. Chem. Commun. 1965, 0, 621-622.
  • 48. Kerpal, C.; Harding, D. J.; Lyon, J. T.; Meijerand, G.; Fielicke, A. J. Phys. Chem. C 2013, 117, 12153-12158.
  • 49. Clouston, L. J.; Bernales, V.; Carlson, R. K.; Gagliardi, L.; Lu, C. C. Inorg. Chem. 2015, 54, 9263-9270.
  • 50. Roy, D.; Navarro-Vazquez, A.; Schleyer, P. V. R. J. Am. Chem. Soc. 2009, 131, 13045-13053.
  • 51. Rittle, J.; Peters, J. C. J. Am. Chem. Soc. 2016, 138, 4243-4248.
  • 52. Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696-1700.
  • 53. Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. Science 2011, 334, 974-977.
  • 54. Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334, 940.
  • 55. Legare, M. A.; Belanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Science 2018, 359, 896-900.
  • 56. Severin, K. Chem. Soc. Rev. 2015, 44, 6375-6386.
  • 57. Yokelson, H. B.; Millevolte, A. J.; Gillette, G. R.; West, R. J. Am. Chem. Soc. 1987, 109, 6865-6866.
  • 58. Yildiz, C. B. J. Mol. Model. 2018, 24, 18.
  • 59. Yildiz, C. B. Comput. Theor. Chem. 2018, 1134, 47-53.
  • 60. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; et al. Gaussian 16, revision B.01. Gaussian Inc: Wallingford, CT, USA, 2016.
  • 61. Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
  • 62. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.
  • 63. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Comp. Chem. 1983, 4, 294-301.
  • 64. Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654-3665.
  • 65. Kendall, R. A.; Dunning, T. H.; Harrison Jr, R. J. J. Chem. Phys. 1992, 96, 6796-6806.
  • 66. Woon, D. E.; Dunning Jr, T. H. J. Chem. Phys. 1993, 98, 1358-1371.
  • 67. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736-1740.
  • 68. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
  • 69. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1.
  • 70. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1991, 95, 5853-5860.
  • 71. Dennington, R. II.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. GaussView v.5.0.9 Visualizer and Builder. Gaussian Inc: Wallingford, CT, USA, 2009.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Anh Van NGUYEN, Victor İvanovic DEINEKA, Lyudmila Aleksandrovna DEINEKA, Anh Thi Ngoc VU

Cem Burak YILDIZ, Akın AZİZOĞLU

Synthesis, characterization, and nonlinear optical properties of some new series of S-(5-aryl-1,3,4-oxadiazol-2-yl) 2-chloroethanethioate derivatives

Zahra Dono GHEZELBASH, Miri MAHMOOD, Karim Akbari DILMAGHANI, Hamideh MOTIEI

Réka BARABÁŞ, Dennis DEEMTER, Gabriel KATONA, Gabriel BATIN, László BARABÁS, Liliana BIZO, Oana CADAR

Improving the mechanical and thermal properties of chlorinated poly(vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler

Mohamed Yahia Marei ABDELRAHIM, Gomaa Abdelgawad Mohammed ALI, Ahmed Abd Allah HAROUN, Abou El fettouh Abd El Moneim ABD EL-HAKIM, Abdel Gawad Mohamed RABIE

Effect of Fe substitution on the partial oxidation of methane to syngas over La0.7Sr0.3Co1−y Fey O3−δ perovskites

Bambang PRIJAMBOEDI, Irmina Kris MURWANI, Perry BURHAN, Adilah ALIYATULMUNA, Hamzah FANSURI

Qualitative and quantitative determination of the effective components of the plants in different herbal slimming products in Turkey by HPLC

Bilal YILMAZ, Zühal GÜVENALP, Sefa GÖZCÜ, Benan DURSUNOĞLU, Hafize YUCA

Effect of Fe substitution on the partial oxidation of methane to syngas over La$_{0.7}$Sr$_{0.3}$Co$_{1-y}$Fe$_{y}$O$_{3-\delta}$ perovskites

Adilah ALIYATULMUNA, Perry BURHAN, Bambang PRIJAMBOEDI, Hamzah FANSURI, İrmina Kris MURWANI

Methyl-substituted 2-aminothiazole–based cobalt(II) and silver(I) complexes: synthesis, X-ray structures, and biological activities

Tufail AHMAD, Ezzat KHAN, Zarif GUL, Farhat ULLAH, Awal NOOR, Muhammad Nawaz TAHIR

A theoretical investigation on the activation of small molecules by a disilenide: a DFT prediction

Cem Burak YILDIZ, Akın AZİZOĞLU