A theoretical investigation on the activation of small molecules by a disilenide: a DFT prediction

A theoretical investigation on the activation of small molecules by a disilenide: a DFT prediction

Herein, we proposed several mechanistic scenarios for activation of small molecules (NH3 , CO2 , CS 2 , H2 ,CH4 , N2 , and N2 O) by a disilicon analogue of a vinyl anion (1H) using density functional theory (DFT) calculations.The DFT results established that all the possible reactions to yield a variety of potential products have an exergonicnature except for the activation of N2 with the obtained overall energy of ∆G = 33.6 kcal mol −1. Moreover, the highestexergonic character was ∆G = −95.8 kcal mol −1for N2 O. Therefore, the findings reveal that 1H can be considered asuitable candidate for activation of NH3 , CO2 , CS 2 , H2 , CH4 , and N2 O under metal-free conditions.

___

  • 1. Tolman, W. B. Activation of Small Molecules: Organometallic and Bioinorganic Perspective; Wiley: Weinheim, Germany, 2006.
  • 2. Erker, G.; Stephan, D. W. Frustrated Lewis Pairs II: Expanding the Scope; Springer-Verlag: Heidelberg, Germany, 2013.
  • 3. Aresta, M. Carbon Dioxide Recovery and Utilization; Kluwer: Dordrecht, the Netherlands, 2003.
  • 4. Liu, C. J.; Mallinson, R.; Aresta, M. Utilization of Greenhouse Gases; ACS: Washington, DC, USA, 2003.
  • 5. Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy; Wiley-VCH: Weinheim, Germany, 2006.
  • 6. Sakakura. T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365-2387.
  • 7. Lee, J. H.; Pink, M.; Tomaszewski, J.; Fan, H.; Caulton, K. G. J. Am. Chem. Soc. 2007, 129, 8706-8707.
  • 8. Tolman, W. B. Angew. Chem. Int. Ed. 2010, 49, 1018-1024.
  • 9. Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115-1133.
  • 10. Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259-272.
  • 11. Leitner, W. Coord. Chem. Rev. 1996, 155, 257-284.
  • 12. Shilov, A. E.; Shulpin, G. B. Chem. Rev. 1997, 97, 2879-2932.
  • 13. Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471-2526.
  • 14. Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675-5732.
  • 15. Algarra, A. G. Inorg. Chem. 2017, 56, 186-196.
  • 16. Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124-1126.
  • 17. Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880-1881.
  • 18. Mömming, C. M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2009, 48, 6643-6646.
  • 19. Otten, E.; Neu. E. C.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 9918-9919.
  • 20. Chase, P. A.; Stephan, D. W. Angew. Chem. Int. Ed. 2008, 47, 7433-7437.
  • 21. Spikes, G. H.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 12232-12233.
  • 22. Wang, Y.; Chen, M.; Xie, Y.; Wei, P.; Schaefer III, H. F.; Schleyer, P. V. R.; Robinson, G. H. Nat. Chem. 2015, 7, 509-513.
  • 23. Jana, A.; Schulzke, C.; Roesky, H. W. J. Am. Chem. Soc. 2009, 131, 4600-4601.
  • 24. Xi, R.; Sita, L. R. Inorg. Chim. Acta 1998, 270, 118-122.
  • 25. Sita, L. R.; Babcock, J. R.; Xi, R. J. Am. Chem. Soc. 1996, 118, 10912-10913.
  • 26. Babcock, J. R.; Liable-Sands, L.; Rheingold, A. L.; Sita, L. R. Organomet. 1999, 18, 4437-4441.
  • 27. Mück, F. M.; Baus, J. A.; Nutz, M.; Burschka, C.; Poater, J.; Bickelhaupt, F. M.; Tacke, R. Chem. Eur. J. 2015, 21, 16665-16672.
  • 28. Majumdar, M.; Omlor, I.; Yildiz, C. B.; Azizoglu, A.; Huch, V.; Scheschkewitz, D. Angew. Chem. Int. Ed. 2015, 54, 8746-8750.
  • 29. Yildiz, C. B.; Scheschkewitz, D. Organomet. 2017, 36, 3035-3042.
  • 30. Scheschkewitz, D. Angew. Chem. Int. Ed. 2004, 43, 2965-2967.
  • 31. Ichinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Organomet. 2004, 23, 3088-3090.
  • 32. Inoue, S.; Ichinohe, M.; Sekiguchi, A. Chem. Lett. 2005, 34, 1564-1565.
  • 33. Yamaguchi, T.; Ichinohe, M.; Sekiguchi, A. New J. Chem. 2010, 34, 1544-1546.
  • 34. Cowley, M. J.; Abersfelder, K.; White, A. J. P.; Majumdar, M.; Scheschkewitz, D. Chem. Commun. 2012, 48, 6595-6597.
  • 35. Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307, 1080-1082.
  • 36. Dell’Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampoloni, G. Chem. Rev. 2003, 103, 3857-3898.
  • 37. Louie, J. Curr. Org. Chem. 2005, 9, 605-623.
  • 38. Steeneveldt, R.; Berger, B.; Torp, T. A. Chem. Eng. Res. Des. 2006, 84, 739-763.
  • 39. Lee, C. H.; Laitar, D. S.; Mueller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2007, 129, 13802-13803.
  • 40. Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Senanayake, S. D.; Whiteand, M. G.; Chen, J. G. ACS Catal. 2015, 5, 6696-6706.
  • 41. Dietz, L.; Piccininand, S.; Maestri, M. J. Phys. Chem. C 2015, 119, 4959-4966.
  • 42. Li, J.; Hermann, M.; Frenking, G.; Jones, C. Angew. Chem. Int. Ed. 2012, 51, 8611-8614.
  • 43. Neu, R. C.; Otten, E.; Lough, A.; Stephan, D. W. Chem. Sci. 2011, 2, 170-176.
  • 44. Dureen, A.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 13559-13568.
  • 45. Hermann, M.; Frenking, G.; Jones, C. Inorg. Chem. 2014, 53, 6482-6490.
  • 46. Ma, G.; Li, Z. H. Phys. Chem. Chem. Phys. 2016, 18, 11539-11549.
  • 47. Allen, A. D.; Senoff, C. V. Chem. Commun. 1965, 0, 621-622.
  • 48. Kerpal, C.; Harding, D. J.; Lyon, J. T.; Meijerand, G.; Fielicke, A. J. Phys. Chem. C 2013, 117, 12153-12158.
  • 49. Clouston, L. J.; Bernales, V.; Carlson, R. K.; Gagliardi, L.; Lu, C. C. Inorg. Chem. 2015, 54, 9263-9270.
  • 50. Roy, D.; Navarro-Vazquez, A.; Schleyer, P. V. R. J. Am. Chem. Soc. 2009, 131, 13045-13053.
  • 51. Rittle, J.; Peters, J. C. J. Am. Chem. Soc. 2016, 138, 4243-4248.
  • 52. Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696-1700.
  • 53. Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. Science 2011, 334, 974-977.
  • 54. Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334, 940.
  • 55. Legare, M. A.; Belanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Science 2018, 359, 896-900.
  • 56. Severin, K. Chem. Soc. Rev. 2015, 44, 6375-6386.
  • 57. Yokelson, H. B.; Millevolte, A. J.; Gillette, G. R.; West, R. J. Am. Chem. Soc. 1987, 109, 6865-6866.
  • 58. Yildiz, C. B. J. Mol. Model. 2018, 24, 18.
  • 59. Yildiz, C. B. Comput. Theor. Chem. 2018, 1134, 47-53.
  • 60. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; et al. Gaussian 16, revision B.01. Gaussian Inc: Wallingford, CT, USA, 2016.
  • 61. Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
  • 62. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.
  • 63. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Comp. Chem. 1983, 4, 294-301.
  • 64. Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654-3665.
  • 65. Kendall, R. A.; Dunning, T. H.; Harrison Jr, R. J. J. Chem. Phys. 1992, 96, 6796-6806.
  • 66. Woon, D. E.; Dunning Jr, T. H. J. Chem. Phys. 1993, 98, 1358-1371.
  • 67. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736-1740.
  • 68. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
  • 69. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1.
  • 70. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1991, 95, 5853-5860.
  • 71. Dennington, R. II.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. GaussView v.5.0.9 Visualizer and Builder. Gaussian Inc: Wallingford, CT, USA, 2009.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK