Performance degradation of LixFePO4 (x = 0, 1) induced by postannealing

Olivine LiFePO4 has been studied for more than a decade as a promising cathode material for rechargeable lithium batteries. However, the low electric conductivity and tap density still hinder its large-scale commercialization. Micro-sized LiFePO4 is prepared by an optimized hydrothermal method in this paper. The influence of postannealing on the physicochemical properties of LiFePO4 and FePO4 is investigated to understand the plausible mechanism for performance degradation. It is found that postannealing even chemical delithiation greatly affects the particle size, morphology, pore distribution, surface area, and probably the lattice strain of LixFePO4 (x = 0, 1). Consequently, the electrochemical performances of annealed materials are severely deteriorated because of the sluggish lithium diffusion, difficult electrolyte accessibility, and incomplete phase transition during charge/discharge. In addition, the ``self-healing'' process along with cycling is analyzed by in-situ synchrotron X-ray diffraction.

Performance degradation of LixFePO4 (x = 0, 1) induced by postannealing

Olivine LiFePO4 has been studied for more than a decade as a promising cathode material for rechargeable lithium batteries. However, the low electric conductivity and tap density still hinder its large-scale commercialization. Micro-sized LiFePO4 is prepared by an optimized hydrothermal method in this paper. The influence of postannealing on the physicochemical properties of LiFePO4 and FePO4 is investigated to understand the plausible mechanism for performance degradation. It is found that postannealing even chemical delithiation greatly affects the particle size, morphology, pore distribution, surface area, and probably the lattice strain of LixFePO4 (x = 0, 1). Consequently, the electrochemical performances of annealed materials are severely deteriorated because of the sluggish lithium diffusion, difficult electrolyte accessibility, and incomplete phase transition during charge/discharge. In addition, the ``self-healing'' process along with cycling is analyzed by in-situ synchrotron X-ray diffraction.

___

  • Armand, M.; Tarascon, J. M. Nature 2008, 451, 652–657.
  • Whittingham, M. S. Proc. IEEE 2012, 100, 1518–1534.
  • Dunn, B.; Kamath, H.; Tarascon J. M. Science 2011, 334, 928–935.
  • Goodenough, J. B. J. Solid State Electrochem. 2012, 16, 2019–2029.
  • Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen J. Adv. Mater. 2011, 23, 1695–1715.
  • Kang K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Science 2006, 311, 977–980.
  • Kraytsberg, A.; Ein-Eli, Y. Adv. Energy Mater. 2012, 2, 922–939.
  • Gong, Z. L.; Yang, Y. Energy Environ. Sci. 2011, 4, 3223–3242.
  • Nyten, A.; Abouimrane, A.; Armand, M.; Gustafsson, T.; Thomas, J. O. Electrochem. Commun. 2005, 7, 156–160.
  • Kim, J. C.; Moore, C. J.; Kang, B.; Hautier, G.; Jain, A.; Ceder, G. J. Electrochem. Soc. 2011, 158, A309–A315.
  • Sun, X.; Xu, Y.; Jia, M.; Ding, P.; Liu, Y.; Chen, K. J. Mater. Chem. A 2013, 1, 2501–2507.
  • Barpanda, P.; Ati, M.; Melot, B. C.; Rousse, G.; Chotard, J. N.; Doublet, M. L.; Sougrati, M. T.; Corr, S. A.; Jumas, J. C.; Tarascon, J. M. Nat. Mater. 2011, 10, 772–779.
  • Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587–603.
  • Manthiram, A. J. Phys. Chem. Lett. 2011, 2, 176–184.
  • Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188–1194.
  • Park, O. K.; Cho, Y.; Lee, S.; Yoo, H. C.; Song, H. K.; Cho, J. Energy Environ. Sci. 2011, 4, 1621–1633.
  • Morgan, D.; Ven, A. V. d.; Ceder, G. Electrochem. Solid-State Lett. 2004, 7, A30–A32.
  • Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085–5092.
  • Nishimura, S. I.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M.; Yamada, A. Nat. Mater. 2008, 7, 707–711.
  • Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97–98, 498–502.
  • Guoying, C.; Xiangyun, S.; Thomas, J. R. Electrochem. Solid-State Lett. 2006, 9, A295–A298.
  • Laffont, L.; Delacourt, C.; Gibot, P.; Wu, M. Y.; Kooyman, P.; Masquelier, C.; Tarascon, J. M. Chem. Mater. 2006, 18, 5520–5529.
  • Delmas, C.; Maccario, M.; Croguennec, L.; Le Cras, F.; Weill, F. Nat. Mater. 2008, 7, 665–671.
  • Yamada, A.; Koizumi, H.; Nishimura, S. I.; Sonoyama, N.; Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y. Nat. Mater. 2006, 5, 357–360.
  • Gu, L.; Zhu, C.; Li, H.; Yu, Y.; Li, C.; Tsukimoto, S.; Maier, J.; Ikuhara, Y. J. Am. Chem. Soc. 2011, 133, 4661–4663.
  • Malik, R.; Zhou, F.; Ceder, G. Nat. Mater. 2011, 10, 587–590.
  • Bai, P.; Cogswell, D. A.; Bazant, M. Z. Nano Lett. 2011, 11, 4890–4896.
  • Wang, J.; Sun, X. Energy Environ. Sci. 2012, 5, 5163–5185.
  • Kang, B.; Ceder, G. Nature 2009, 458, 190–193.
  • Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123–128.
  • Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.; Carlach, P.; Hamelet, S.; Tarascon, J. M.; Masquelier, C. Nat. Mater. 2008, 7, 741–747.
  • Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Nano Lett. 2010, 10, 4123–4127.
  • Sun, X.; Xu, Y.; Liu, Y.; Li, L. Acta Phys.-Chim. Sin. 2012, 28, 2885–2892.
  • Sun, X. F.; Xu, Y. L. Mater. Lett. 2012, 84, 139–142.
  • Yang, S.; Song, Y.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2002, 4, 239–244.
  • Sun, X.; Xu, Y.; Chen, G.; Li, T.; Jia, M.; Li, L. Chinese. J. Inorg. Chem. 2013, online, DOI: 10.11862/CJIC.2014.160.
  • Zhu, C.; Yu, Y.; Gu, L.; Weichert, K.; Maier, J. Angew. Chem. Int. Edn 2011, 50, 6278–6282.
  • Wang, X. J.; Jaye, C.; Nam, K. W.; Zhang, B.; Chen, H. Y.; Bai, J.; Li, H.; Huang, X.; Fischer, D. A.; Yang, X. Q. J. Mater. Chem. 2011, 21, 11406–11411.
  • Cogswell, D. A.; Bazant, M. Z. ACS Nano 2012, 6, 2215–2225.
  • Burch, D.; Bazant, M. Z. Nano Lett. 2009, 9, 3795–3800.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Rosmarinic acid: a potent carbonic anhydrase isoenzymes inhibitor

Meryem TOPAL, İlhami GÜLÇİN

Calixcephems: clustered cephalosporins analogous to calixpenams as novel potential anti-MRSA agents

Fazel Nasuhi PUR, Karim Akbari DILMAGHANI

Convenient method for synthesis of various fused heterocycles via utility of 4-acetyl-5-methyl-1-phenyl-pyrazole as precursor

Sobhi MOHAMED GOMHA, Ahmad SAMI SHAWALI, Abdou OSMAN ABDELHAMID

Synthesis, anticandidal activity, and cytotoxicity of some thiazole derivatives with dithiocarbamate side chains

Leyla YURTTAŞ, Yusuf ÖZKAY, Fatih DEMİRCİ, Gamze GÖGER, Şafak Ulusoylar YILDIRIM, Usama ABU MOHSEN, Ömer ÖZTÜRK, Zafer Asım KAPLANCIKLI

Graphite oxide as an efficient solid reagent for esterification reactions

Maryam MIRZA-AGHAYAN, Rabah BOUKHERROUB, Mahshid RAHIMIFARD

Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles

Yasmeen JUNEJO, Abdulhadi BAYKAL

Linear assembly and 3D networks of peptide modified gold nanoparticles

Şaban KALAY, Clement BLANCHET, Mustafa CULHA

Synthesis and characterization of magnesium borate minerals of admontite and mcallisterite obtained via ultrasonic mixing of magnesium oxide and various sources of boron: a novel method

Azmi Seyhun KIPÇAK, Emek Moroydor DERUN, Sabriye PİŞKİN

Binding of flavanone with b-CD/ctDNA: a spectroscopic investigation

Chandrasekaran SOWRIRAJAN, Sameena YOUSUF, Muthu Vijayan Enoch İsrael VIJAYARAJ

Green synthesis of Fe3O4 nanoparticles by one-pot saccharide-assisted hydrothermal method

Ayşe DEMİR, Abdulhadi BAYKAL, Hüseyin SÖZERİ