The effects of ionic strength and temperature on the dissociation constants of adefovir and cidofovir used as antiviral drugs

The effects of ionic strength and temperature on the dissociation constants of adefovir (PMEA) and cidofovir (HPMPC) used as antiviral drugs were studied at 298 K, 308 K, and 318 K in aqueous media and at different ionic strength backgrounds of NaCl potentiometrically. The dissociation constants of the ligands were determined via the calculation of the titration data with the SUPERQUAD computer program. The thermodynamic parameters (D G, D H, and D S) for all species were calculated. The dissociation order of nitrogen and oxygen atoms in the ligands according to proton affinities values were obtained using PM6 semiempirical methods. Moreover, pKa values of the ligands were determined at 0.00, 0.10, 0.15, 0.20, and 0.5 mol dm-3 ionic strength (NaCl) at 298 K. Consequently, when the ionic strength and temperature in the titration cells were increased, the obtained dissociation constants of PMEA (pKa3, pKa4, and pKa5) and HPMPC (pKa2 and pKa3) decreased.

The effects of ionic strength and temperature on the dissociation constants of adefovir and cidofovir used as antiviral drugs

The effects of ionic strength and temperature on the dissociation constants of adefovir (PMEA) and cidofovir (HPMPC) used as antiviral drugs were studied at 298 K, 308 K, and 318 K in aqueous media and at different ionic strength backgrounds of NaCl potentiometrically. The dissociation constants of the ligands were determined via the calculation of the titration data with the SUPERQUAD computer program. The thermodynamic parameters (D G, D H, and D S) for all species were calculated. The dissociation order of nitrogen and oxygen atoms in the ligands according to proton affinities values were obtained using PM6 semiempirical methods. Moreover, pKa values of the ligands were determined at 0.00, 0.10, 0.15, 0.20, and 0.5 mol dm-3 ionic strength (NaCl) at 298 K. Consequently, when the ionic strength and temperature in the titration cells were increased, the obtained dissociation constants of PMEA (pKa3, pKa4, and pKa5) and HPMPC (pKa2 and pKa3) decreased.

___

  • Koonin, E. V.; Senkevich, T. G.; Dolja, V. V. Biol. Direct. 2006, 19, 1–29.
  • Holy, A. Nucleos. Nucleot. 1987, 6, 147–155.
  • De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.; Hol´y, A. Antiviral Res. 1987, 8, 261–272.
  • Cundy, K. C.; Barditchcrovo, P.; Walker, R. E.; Collier, A. C.; Ebeling, D.; Toole, J.; Jaffe, H. S. Antimicrob. Agents Ch. 1995, 39, 2401–2405.
  • Ying, C.; De Clercq, E.; Neyts, J. J. Viral Hepat. 2000, 7, 79–83.
  • De Clercq, E. Drugs Exp. Clin. Res. 1990, 16, 319–326.
  • Xiong, X.; Flores, C.; Yang, H.; Toole, J. J.; Gibbs, C. S. Hepatology 1998, 28, 1669–1673.
  • Birkus, G.; Gibbs, C. S.; Cihlar, T. J. Viral Hepat. 2003, 10, 50–54.
  • De Clercq, E. Drugs Exp. Clin. Res. 1990, 16, 319–326.
  • Mulato, A. S.; Cherrington, J. M. Antivir. Res. 1997, 36, 91–97.
  • De Clercq, E.; Holy, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P. C. Nature 1986, 323, 464–467.
  • Holy, A.; Rosenberg, I.; Dvorakova, H.; DeClercq, E. Nucleos. Nucleot. 1988, 7, 667–670.
  • De Clercq, E.; Holy, A. Nat. Rev. Drug Discovery. 2005, 4, 928–940.
  • Naesens, L.; De Clercq, E. Nucleos. Nucleot. 1997, 16, 983–992.
  • Berenguer, J.; Mallolas, J. Clin. Infect. Dis. 2000, 30, 182–184.
  • Calista, D. J. Eur. Acad. Dermatol. Venereol. 2000, 14, 484–488.
  • Segarra-Newnham, M.; Vodolo, K. M. Ann. Pharmacother. 2001, 35, 741–744.
  • Legrand, F.; Berrebi, D.; Houhou, N.; Freymuth, F.; Faye, A.; Duval, M.; Mougenot, J. F.; Peuchmaur, M.; Vilmer, E. Bone Marrow Transplant. 2001, 27, 621–626.
  • Bray, M.; Wright, M. E. Clin. Infect. Dis. 2003, 36, 766–774.
  • Meylan, P. R.; Vuadens, P.; Maeder, P.; Sahli, R.; Tagan, M. C. Eur. Neurol. 1999, 41, 172–174.
  • De Luca, A.; Giancola, M. L.; Ammassari, A.; Grisetti, S.; Cingolani, A.; Paglia, M. G.; Govoni, A.; Murri, R.; Testa, L.; Monforte, A. D.; et. al. AIDS 2000, 14, 117–121.
  • Atabey, H.; Sari, H. Fluid Phase Equilibr. 2013, 356, 201–208.
  • Polat, F.; Atabey, H.; Sarı, H.; C¸ ukurovalı, A. Turk. J. Chem. 2013, 37, 439–448.
  • Atabey, H.; Fındık, E.; Sarı, H.; Ceylan, M. Turk. J. Chem. 2014, 38, 109–120.
  • Narin, I.; Sarioglan, S.; Anilanmert, B.; Sari, H. J. Sol. Chem. 2010, 39, 1582– 1588.
  • Altun, Y.; K¨oseo˘glu, F.; Demirelli, H.; Yilmaz, I; C¸ ukurovalı, A.; Kavak, N. J. Braz. Chem. Soc. 2009, 20, 299–308.
  • Do˘gan, A.; Kılı¸c, E. Turk. J. Chem. 2005, 29, 41–47.
  • Atabey, H.; Findik, E.; Sari, H.; Ceylan, M. Acta Chim. Slov. 2012, 59, 847–854.
  • Ogretir, C.; Duran, M.; Aydemir, S. J. Chem. Eng. Data. 2010, 55, 5634–6541.
  • Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902–3909.
  • Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209–221.
  • Stewart, J. J. P. Mol. Model. 2007, 13, 1173 – 1213.
  • Dewar, M. J. S.; Dieter, K. M. J. J. Am. Chem. Soc. 1986, 108, 8075–8086.
  • Sari, H.; Covington, A. K. J. Chem. Eng. Data 2005, 50, 1438–1441.
  • Sanna, D.; Micera, G.; Buglyo, P.; Kiss, T. J. Chem. Soc., Dalton Trans. 1996, 1, 87–92.
  • Wozniak, M.; Nowogrocki, G. Talanta 1979, 26, 381–388.
  • Nowogrocki, G.; Canonne J.; Wozniak, M. Bull. Soc. Chim. Fr. 1976, 13, 69–77.
  • Popov, K.; R¨onkk¨om¨aki, H.; Lajunen, L. H. J. Pure Appl. Chem. 2001, 73, 1641–1677.
  • Atabey, H.; Sari, H. J. Chem. Eng. Data. 2011, 56, 3866–3872.
  • Atabey, H.; Sari, H.; Al-Obaidi, F. N. J. Sol. Chem. 2012, 41, 793–803.
  • El-Gogary, T. M.; El-Bindary, A. A.; Hilali, A. S. Spectrochim. Acta, Part A. 2002, 58, 447–455.
  • Pettit, L. D. Academic Software, 1992, Sourby Farm, Timble, Otley, UK.
  • IUPAC Recommendations 2002, 74, 1169–2200.
  • Gran, G. Acta Chem. Scand. 1950, 4, 559–565. Gran, G. Analyst 1952, 77, 661–671.
  • Gans, P.; Sabatini, A.; Vacca, A. J. Chem. Soc. Dalton Trans. 1985, 6, 1195–1200.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Graphite oxide as an efficient solid reagent for esterification reactions

Maryam MIRZA-AGHAYAN, Rabah BOUKHERROUB, Mahshid RAHIMIFARD

Graphene oxide--magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution

Kadem MERAL, Önder METİN

Linear assembly and 3D networks of peptide modified gold nanoparticles

Şaban KALAY, Clement BLANCHET, Mustafa CULHA

Synthesis of novel triazoles bearing 1,2,4-oxadiazole and phenylsulfonyl groups by 1,3-dipolar cycloaddition of some organic azides and their biological activities

Yaşar DÜRÜST, Hamza KARAKUŞ, Muhsine Zeynep YAVUZ, Ali Akçahan GEPDİREMEN

Green synthesis of Fe3O4 nanoparticles by one-pot saccharide-assisted hydrothermal method

Ayşe DEMİR, Abdulhadi BAYKAL, Hüseyin SÖZERİ

Study on transportation of phenol through a nanotubule membrane

Yue LIU, Li XIE, Xiaoxue FAN, Dingyan FAN, Shasheng HUANG

Synthesis and characterization of magnesium borate minerals of admontite and mcallisterite obtained via ultrasonic mixing of magnesium oxide and various sources of boron: a novel method

Azmi Seyhun KIPÇAK, Emek Moroydor DERUN, Sabriye PİŞKİN

Synthesis, anticandidal activity, and cytotoxicity of some thiazole derivatives with dithiocarbamate side chains

Leyla YURTTAŞ, Yusuf ÖZKAY, Fatih DEMİRCİ, Gamze GÖGER, Şafak Ulusoylar YILDIRIM, Usama ABU MOHSEN, Ömer ÖZTÜRK, Zafer Asım KAPLANCIKLI

Convenient method for synthesis of various fused heterocycles via utility of 4-acetyl-5-methyl-1-phenyl-pyrazole as precursor

Sobhi MOHAMED GOMHA, Ahmad SAMI SHAWALI, Abdou OSMAN ABDELHAMID

QSAR study of chalcone derivatives as anti-Leishmania agents

Maryam IMAN, Asghar DAVOOD, Nasimossadat BANAROUEI