Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles

A novel green approach for the synthesis of silver nanoparticles using erythromycin as a reducing/capping agent is presented. Erythromycin-derived silver nanoparticles were characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Monodispersed silver nanoparticles showed excellent and promising catalytic activity for reduction of 3 differently charged dyes (eosin B, methylene blue, and rose bengal) in the presence of NaBH4. The study revealed that 100% reduction of these dyes can be achieved efficiently in just 150--250 s. They were easily recovered from the reaction medium and were reused 5 times, showing enhanced catalytic potential each time. Glass-supported Ag(0) NPs (0.15 mg) were removed by washing sequentially and reused 5 times for catalytic reduction of these dyes at 10 m M. All dyes were successfully reduced by erythromycin-derived silver nanoparticles up to 7%. Based upon these results, it was concluded that erythromycin-derived silver nanoparticles are a novel, rapid, and highly economical alternative for environmental protection against pollution caused by dyes and can be extended for the control of other reducible contaminants.

Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles

A novel green approach for the synthesis of silver nanoparticles using erythromycin as a reducing/capping agent is presented. Erythromycin-derived silver nanoparticles were characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Monodispersed silver nanoparticles showed excellent and promising catalytic activity for reduction of 3 differently charged dyes (eosin B, methylene blue, and rose bengal) in the presence of NaBH4. The study revealed that 100% reduction of these dyes can be achieved efficiently in just 150--250 s. They were easily recovered from the reaction medium and were reused 5 times, showing enhanced catalytic potential each time. Glass-supported Ag(0) NPs (0.15 mg) were removed by washing sequentially and reused 5 times for catalytic reduction of these dyes at 10 m M. All dyes were successfully reduced by erythromycin-derived silver nanoparticles up to 7%. Based upon these results, it was concluded that erythromycin-derived silver nanoparticles are a novel, rapid, and highly economical alternative for environmental protection against pollution caused by dyes and can be extended for the control of other reducible contaminants.

___

  • Sondi, I.; Goia, D. V.; Matijevic, E. J. Colloid Interface Sci. 2003, 260, 75–81.
  • Edison, T. I.; Sethuraman, M. G. Process. Biochem. 2012, 47, 1351–1357.
  • Aksomaityte, G.; Poliakoff, M.; Lester, E. Chem. Eng. Sci. 2013, 85, 2–10.
  • Darroudi, M.; Zak, A. K.; Muhamad, M. R.; Huang, N. M.; Hakim, M. Mater. Lett. 2012, 117, 117–120.
  • Kim, S. E.; Park, J. H.; Lee, B.; Lee, J. C.; Kwon, Y. K. Radiat. Phys. Chem. 2012, 81, 978–981.
  • Balamurugan, A., Ho, K. C.; Chen, S. M. Synth. Met. 2009, 159, 2544–2549.
  • Tagar, Z. A.; Sirajuddin, Memon, N.; Agheem M. H.; Junejo, Y.; Hassan, S. S.; Kalwar, N. H.; Khattak, M. I. Sens. Actuators B 2011, 157, 430-37.
  • Junejo, Y.; Karao˘glu, E.; Baykal, A.; Sirajuddin J. Inorg. Organomet. Polym. 2013, 23, 970–975.
  • Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S. A.; Michailidis, N. Mater. Lett. 2012, 76, 18–
  • Jagtap, U. B.; Bapat, V. A. Ind. Crops Prod. 2013, 46, 132–137.
  • Bar, H.; Bhui, D. K.; Sahoo, G. P.; Sarkar, P.; Pyne, S.; Misra, A. Colloids Surf. A: Physicochem. Eng. Aspects 2009, 348, 212–216.
  • Saha, S.; Wang, J. M.; Pal, A. Sep. Purif. Technol. 2012, 89, 147–159.
  • Nanda, A.; Saravanan, M. Nanomedicine: Nanotechnology Biology and Medicine 2009, 5, 452–456.
  • Cho, K. H.; Park, J. E.; Osaka, T.; Park, S. G. Electrochim. Acta 2005, 51, 956–960.
  • Sondi, I.; Sondi, B. S. J. Colloid Interface Sci. 2004, 275, 177–182.
  • Shahverdi, A. R.; Fakhimi, A.; Shahverdi, H. R.; Minaian, S. Nanomedicine: Nanotechnology Biology and Medicine 2007, 3, 168–171.
  • Maneerung, T.; Tokur,a S.; Rujiravanit, R. Carbohydr. Polym. 2008, 72, 43–51.
  • Pradhan, N.; Pal, A.; Pal, T. Langmuir 2001, 17, 1800–1802.
  • Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025–1102.
  • Siani, A.; Wigel, K. R.; Alexeev, O. S.; Amiridis, M. D. J. Catal. 2008, 257, 5–15.
  • Cortie, M. B.; Van der Lingen, E. Mater. Forum 2002, 26, 1–14.
  • Brown, M. A.; De Vito, S. C. Crit. Rev. Environ. Sci. Technol. 1993, 23, 249–324.
  • Safarik, I.; Ptackova, L.; Safarikova, M. Eur. Cell Mater. 2002, 3, 52–55.
  • Lin, J.; Zong, R.; Zhou, M.; Zhu, Y. Appl. Catal. B: Environ. 2009, 89, 425–431.
  • Ibhadon, A. O.; Greenway, G. M.; Yue, Y. Catal. Commun. 2008, 9, 153–157.
  • Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. M. Appl. Catal. B: Environ. 2002, 39, 75–90.
  • Ferreira-Leitao, V. S.; da Silva, J. G.; Bon, E. P. S. Appl. Catal. B Environ. 2003, 42, 213–221.
  • Daneshvar, N.; Aleboyeh, A.; Khataee, A. R. Chemosphere 2005, 59, 761–767.
  • Jana, N. R.; Wang, Z. L.; Pal, T. Langmuir 2000, 16, 2457–2463.
  • Fan, J.; Guo, Y.; Wang, J.; Fan, M. J. Hazard. Mater. 2009, 166, 904–910.
  • Sau, T. K.; Pal, A.; Pal, T. J. Phys. Chem. B 2001, 105, 9266–9272.
  • Martin, C. F.; Birot, M.; Deleuze, H.; Desforges, A.; Backov, R. React. Funct. Polym. 2007, 67, 1072–1082.
  • Kumar, P.; Govindaraju, M.; Senthamilselvi, S.; Premkumar, K. Colloids Surf. B 2013, 103, 658–661.
  • Kalwar, N. H.; Sirajuddin; Sherazi, S. H.; Khaskheli, A. R.; Hallam, K. R.; Scott, T. B.; Tagar, Z. A.; Hassan, S. S. Appl. Catal. A: Gen. 2013, 453, 54–59. 35. Peng, H.; Yang, A.; Xiong, J. Carbohydr. Polym. 2013, 91, 348–355.
  • Philip, D.; Unni, C.; Aromal, S. A.; Vidhu, V. K. Spectrochim. Acta A 2011, 78, 899–904.
  • Wejrzanowski, T.; Pielaszek, R.; Opalinska, A.; Matysiak, H.; Lojkowski, W.; Kurzydowski, K. J. Appl. Surf. Sci. 2006, 31, 253–264.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Simultaneous determination of dexpanthenol, lidocaine hydrochloride, and mepyramine maleate in combined pharmaceutical gel by capillary electrophoresis

Gülden Başmakçi AKYIL, Hayriye Eda Şatana KARA, Sezen Yarimkaya BAŞ, Nusret ERTAŞ, Nilgün GÜNDEN GÖĞER

Effects of functional groups of triple bonds containing molecules on nickel electroplating

Esma SEZER, Belkıs USTAMEHMETOĞLU, Ramazan KATIRCI

The effects of ionic strength and temperature on the dissociation constants of adefovir and cidofovir used as antiviral drugs

Hasan ATABEY, Hayati SARI

Binding of flavanone with b-CD/ctDNA: a spectroscopic investigation

Chandrasekaran SOWRIRAJAN, Sameena YOUSUF, Muthu Vijayan Enoch İsrael VIJAYARAJ

Study on transportation of phenol through a nanotubule membrane

Yue LIU, Li XIE, Xiaoxue FAN, Dingyan FAN, Shasheng HUANG

Rosmarinic acid: a potent carbonic anhydrase isoenzymes inhibitor

Meryem TOPAL, İlhami GÜLÇİN

N-Heterocyclic carbene (NHC) palladium(II) complexes bearing chiral oxazoline ligands and their catalytic activities in allylic alkylation reactions

Serpil DENİZALTI, Hayati TÜRKMEN, Bekir ÇETİNKAYA

Graphene oxide--magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution

Kadem MERAL, Önder METİN

Performance degradation of LixFePO4 (x = 0, 1) induced by postannealing

Xiaofei SUN, Youlong XU, Xiaoyu ZHENG, Xiangfei MENG, Rui ZHANG

Convenient method for synthesis of various fused heterocycles via utility of 4-acetyl-5-methyl-1-phenyl-pyrazole as precursor

Sobhi MOHAMED GOMHA, Ahmad SAMI SHAWALI, Abdou OSMAN ABDELHAMID