Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles

A novel green approach for the synthesis of silver nanoparticles using erythromycin as a reducing/capping agent is presented. Erythromycin-derived silver nanoparticles were characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Monodispersed silver nanoparticles showed excellent and promising catalytic activity for reduction of 3 differently charged dyes (eosin B, methylene blue, and rose bengal) in the presence of NaBH4. The study revealed that 100% reduction of these dyes can be achieved efficiently in just 150--250 s. They were easily recovered from the reaction medium and were reused 5 times, showing enhanced catalytic potential each time. Glass-supported Ag(0) NPs (0.15 mg) were removed by washing sequentially and reused 5 times for catalytic reduction of these dyes at 10 m M. All dyes were successfully reduced by erythromycin-derived silver nanoparticles up to 7%. Based upon these results, it was concluded that erythromycin-derived silver nanoparticles are a novel, rapid, and highly economical alternative for environmental protection against pollution caused by dyes and can be extended for the control of other reducible contaminants.

Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles

A novel green approach for the synthesis of silver nanoparticles using erythromycin as a reducing/capping agent is presented. Erythromycin-derived silver nanoparticles were characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Monodispersed silver nanoparticles showed excellent and promising catalytic activity for reduction of 3 differently charged dyes (eosin B, methylene blue, and rose bengal) in the presence of NaBH4. The study revealed that 100% reduction of these dyes can be achieved efficiently in just 150--250 s. They were easily recovered from the reaction medium and were reused 5 times, showing enhanced catalytic potential each time. Glass-supported Ag(0) NPs (0.15 mg) were removed by washing sequentially and reused 5 times for catalytic reduction of these dyes at 10 m M. All dyes were successfully reduced by erythromycin-derived silver nanoparticles up to 7%. Based upon these results, it was concluded that erythromycin-derived silver nanoparticles are a novel, rapid, and highly economical alternative for environmental protection against pollution caused by dyes and can be extended for the control of other reducible contaminants.

___

  • Sondi, I.; Goia, D. V.; Matijevic, E. J. Colloid Interface Sci. 2003, 260, 75–81.
  • Edison, T. I.; Sethuraman, M. G. Process. Biochem. 2012, 47, 1351–1357.
  • Aksomaityte, G.; Poliakoff, M.; Lester, E. Chem. Eng. Sci. 2013, 85, 2–10.
  • Darroudi, M.; Zak, A. K.; Muhamad, M. R.; Huang, N. M.; Hakim, M. Mater. Lett. 2012, 117, 117–120.
  • Kim, S. E.; Park, J. H.; Lee, B.; Lee, J. C.; Kwon, Y. K. Radiat. Phys. Chem. 2012, 81, 978–981.
  • Balamurugan, A., Ho, K. C.; Chen, S. M. Synth. Met. 2009, 159, 2544–2549.
  • Tagar, Z. A.; Sirajuddin, Memon, N.; Agheem M. H.; Junejo, Y.; Hassan, S. S.; Kalwar, N. H.; Khattak, M. I. Sens. Actuators B 2011, 157, 430-37.
  • Junejo, Y.; Karao˘glu, E.; Baykal, A.; Sirajuddin J. Inorg. Organomet. Polym. 2013, 23, 970–975.
  • Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S. A.; Michailidis, N. Mater. Lett. 2012, 76, 18–
  • Jagtap, U. B.; Bapat, V. A. Ind. Crops Prod. 2013, 46, 132–137.
  • Bar, H.; Bhui, D. K.; Sahoo, G. P.; Sarkar, P.; Pyne, S.; Misra, A. Colloids Surf. A: Physicochem. Eng. Aspects 2009, 348, 212–216.
  • Saha, S.; Wang, J. M.; Pal, A. Sep. Purif. Technol. 2012, 89, 147–159.
  • Nanda, A.; Saravanan, M. Nanomedicine: Nanotechnology Biology and Medicine 2009, 5, 452–456.
  • Cho, K. H.; Park, J. E.; Osaka, T.; Park, S. G. Electrochim. Acta 2005, 51, 956–960.
  • Sondi, I.; Sondi, B. S. J. Colloid Interface Sci. 2004, 275, 177–182.
  • Shahverdi, A. R.; Fakhimi, A.; Shahverdi, H. R.; Minaian, S. Nanomedicine: Nanotechnology Biology and Medicine 2007, 3, 168–171.
  • Maneerung, T.; Tokur,a S.; Rujiravanit, R. Carbohydr. Polym. 2008, 72, 43–51.
  • Pradhan, N.; Pal, A.; Pal, T. Langmuir 2001, 17, 1800–1802.
  • Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025–1102.
  • Siani, A.; Wigel, K. R.; Alexeev, O. S.; Amiridis, M. D. J. Catal. 2008, 257, 5–15.
  • Cortie, M. B.; Van der Lingen, E. Mater. Forum 2002, 26, 1–14.
  • Brown, M. A.; De Vito, S. C. Crit. Rev. Environ. Sci. Technol. 1993, 23, 249–324.
  • Safarik, I.; Ptackova, L.; Safarikova, M. Eur. Cell Mater. 2002, 3, 52–55.
  • Lin, J.; Zong, R.; Zhou, M.; Zhu, Y. Appl. Catal. B: Environ. 2009, 89, 425–431.
  • Ibhadon, A. O.; Greenway, G. M.; Yue, Y. Catal. Commun. 2008, 9, 153–157.
  • Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. M. Appl. Catal. B: Environ. 2002, 39, 75–90.
  • Ferreira-Leitao, V. S.; da Silva, J. G.; Bon, E. P. S. Appl. Catal. B Environ. 2003, 42, 213–221.
  • Daneshvar, N.; Aleboyeh, A.; Khataee, A. R. Chemosphere 2005, 59, 761–767.
  • Jana, N. R.; Wang, Z. L.; Pal, T. Langmuir 2000, 16, 2457–2463.
  • Fan, J.; Guo, Y.; Wang, J.; Fan, M. J. Hazard. Mater. 2009, 166, 904–910.
  • Sau, T. K.; Pal, A.; Pal, T. J. Phys. Chem. B 2001, 105, 9266–9272.
  • Martin, C. F.; Birot, M.; Deleuze, H.; Desforges, A.; Backov, R. React. Funct. Polym. 2007, 67, 1072–1082.
  • Kumar, P.; Govindaraju, M.; Senthamilselvi, S.; Premkumar, K. Colloids Surf. B 2013, 103, 658–661.
  • Kalwar, N. H.; Sirajuddin; Sherazi, S. H.; Khaskheli, A. R.; Hallam, K. R.; Scott, T. B.; Tagar, Z. A.; Hassan, S. S. Appl. Catal. A: Gen. 2013, 453, 54–59. 35. Peng, H.; Yang, A.; Xiong, J. Carbohydr. Polym. 2013, 91, 348–355.
  • Philip, D.; Unni, C.; Aromal, S. A.; Vidhu, V. K. Spectrochim. Acta A 2011, 78, 899–904.
  • Wejrzanowski, T.; Pielaszek, R.; Opalinska, A.; Matysiak, H.; Lojkowski, W.; Kurzydowski, K. J. Appl. Surf. Sci. 2006, 31, 253–264.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis of novel triazoles bearing 1,2,4-oxadiazole and phenylsulfonyl groups by 1,3-dipolar cycloaddition of some organic azides and their biological activities

Yaşar DÜRÜST, Hamza KARAKUŞ, Muhsine Zeynep YAVUZ, Ali Akçahan GEPDİREMEN

Simultaneous determination of dexpanthenol, lidocaine hydrochloride, and mepyramine maleate in combined pharmaceutical gel by capillary electrophoresis

Gülden Başmakçi AKYIL, Hayriye Eda Şatana KARA, Sezen Yarimkaya BAŞ, Nusret ERTAŞ, Nilgün GÜNDEN GÖĞER

Synthesis of tertiary propargylic phosphonates by addition of trialkynylaluminum reagents to acyl phosphonates and investigation of their antimicrobial activities

Mohammad Shakhawoat HOSSAIN, Sıdıka POLAT ÇAKIR\dag, Ayşe Betül KARADUMAN

Performance degradation of LixFePO4 (x = 0, 1) induced by postannealing

Xiaofei SUN, Youlong XU, Xiaoyu ZHENG, Xiangfei MENG, Rui ZHANG

Green synthesis of Fe3O4 nanoparticles by one-pot saccharide-assisted hydrothermal method

Ayşe DEMİR, Abdulhadi BAYKAL, Hüseyin SÖZERİ

Calixcephems: clustered cephalosporins analogous to calixpenams as novel potential anti-MRSA agents

Fazel Nasuhi PUR, Karim Akbari DILMAGHANI

Binding of flavanone with b-CD/ctDNA: a spectroscopic investigation

Chandrasekaran SOWRIRAJAN, Sameena YOUSUF, Muthu Vijayan Enoch İsrael VIJAYARAJ

Graphite oxide as an efficient solid reagent for esterification reactions

Maryam MIRZA-AGHAYAN, Rabah BOUKHERROUB, Mahshid RAHIMIFARD

Graphene oxide--magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution

Kadem MERAL, Önder METİN

Study on transportation of phenol through a nanotubule membrane

Yue LIU, Li XIE, Xiaoxue FAN, Dingyan FAN, Shasheng HUANG