On the azo dyes derived from benzoic and cinnamic acids used as photosensitizers in dye-sensitized solar cells

On the azo dyes derived from benzoic and cinnamic acids used as photosensitizers in dye-sensitized solar cells

In order to get a better insight into the relationship between molecular structure and photovoltaic performance, six monoazo dye molecules containing benzoic and cinnamic acid moieties were synthesized and their photovoltaic properties were studied. Three of them have not been previously used in solar cells. Spectroscopic measurements of the investigated compounds coupled with theoretical calculations were performed. Short-circuit current density, open-circuit voltage, and fill-factor were determined. It was found that a larger amount of short-circuit current density will be generated if the HOMO–LUMO energy gap is lower, determined by the stability of the molecule and the electronic effect of the donor moiety. Among both series of synthesized dye molecules, the highest obtained values of short-circuit current density were achieved with (2 hydroxynaphthalene-1-ylazo)benzoic acid and (2-hydroxynaphthalene-1-ylazo)cinnamic acid, and thus they were regarded as promising candidates for application in dye-sensitized solar cells.

___

  • 1. Nakajima K, Ohta K, Katayanagi H, Mitsuke K. Photoexcitation and electron injection processes in azo dyes adsorbed on nanocrystalline TiO2 films. Chemical Physics Letters 2011; 510 (4-6): 228-233. doi: 10.1016/j.cplett.2011.05.045
  • 2. Han M, Zhang X, Zhang X, Liao C, Zhu B et al. Azo-coupled zinc phthalocyanines: towards broad absorption and application in dye-sensitized solar cells. Polyhedron 2015; 85: 864-873. doi: 10.1016/j.poly.2014.10.026
  • 3. Mahmood A, Tahir MH, Irfan A, Al-Sehemi AG, Al-Assiri MS. Heterocyclic azo dyes for dye sensitized solar cells: a quantum chemical study. Computational and Theoretical Chemistry 2015; 1066: 94-99. doi: 10.1016/j.comptc.2015.05.020
  • 4. Novir SB, Hashemianzadeh SM. Quantum chemical investigation of structural and electronic properties of transand cis-structures of some azo dyes for dye-sensitized solar cells. Computational and Theoretical Chemistry 2017; 1102: 87-97. doi: 10.1016/j.comptc.2017.01.009
  • 5. Prajongtat P, Suramitr S, Nokbin S, Nakajima K, Mitsuke K et al. Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO2 surface for dye-sensitized solar cell applications. Journal of Molecular Graphics and Modeling 2017; 76: 551-561. doi: 10.1016/j.jmgm.2017.06.002
  • 6. Zhang L, Cole JM, Dai C. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups. ACS Applied Materials & Interfaces 2014; 6 (10): 7535-7546. doi: 10.1021/am502186k
  • 7. Zhang L, Cole J, Waddell P, Low K, Liu X. Relating electron donor and carboxylic acid anchoring substitution effects in azo dyes to dye-sensitized solar cell performance. ACS Sustainable Chemistry & Engineering 2013; 1 (11): 1440-1452. doi: 10.1021/sc400183t
  • 8. Zhang L, Cole JM. TiO2 -assisted photoisomerization of azo dyes using self-assembled monolayers: case study on para-methyl red towards solar-cell applications. ACS Applied Materials & Interfaces 2014; 6 (5): 3742-3749. doi: 10.1021/am500308d
  • 9. Zhang L, Cole JM, Liu X. Tuning solvatochromism of azo dyes with intramolecular hydrogen bonding in solution and on titanium dioxide nanoparticles. Journal of Physical Chemistry C 2013; 117 (49): 26316-26323. doi: 10.1021/jp4088783
  • 10. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 09, Revision D.01. Wallingford, CT, USA: Gaussian, Inc., 2009.
  • 11. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics 1993; 98 (7): 5648-5652. doi: 10.1063/1.464913
  • 12. Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Accounts of Chemical Research 2008; 41 (2): 157-167. doi: 10.1021/ar700111a
  • 13. Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A 1998; 102 (11): 1995-2001. doi: 10.1021/JP9716997
  • 14. Wang Y, Zhou D, Li H, Li R, Zhong Y et al. Hydrogen-bonded supercoil self-assembly from achiral molecular components with light-driven supramolecular chirality. Journal of Materials Chemistry C 2014; 2 (31): 6402-6409. doi: 10.1039/c4tc00649f
  • 15. Tuuttila T, Lipsonen J, Huuskonen J, Rissanen K. Chiral donor-π -acceptor azobenzene dyes. Dyes and Pigments 2009; 80 (1): 34-40. doi: 10.1016/j.dyepig.2008.04.007
  • 16. Thayer FK. m-Nitrocinnamic acid. Organic Syntheses 1925; 5: 83. doi: 10.15227/orgsyn.005.0083
  • 17. Faridoon, Edkins AL, Isaacs M, Mnkandhla D, Hoppe HC et al. Synthesis and evaluation of substituted 4- (N-benzylamino)cinnamate esters as potential anti-cancer agents and HIV-1 integrase inhibitors. Bioorganic & Medicinal Chemistry Letters 2016; 26 (15): 3810-3812. doi: 10.1016/j.bmcl.2016.05.023
  • 18. Skinner WA, Schelstraete MGM, Baker BR. Potential anticancer agents. XLVIII. Analogs of chlorambucil. VI.2 Ring isomers. Journal of Organic Chemistry 1961; 26 (5): 1554-1557. doi: 10.1021/jo01064a060
  • 19. Skinner WA, Schelstraete MGM, Baker BR. Potential anticancer agents. XLVIII. Analogs of chlorambucil. VI.2 Ring isomers. Journal of Organic Chemistry 1961; 26: 1554-1557. doi: 10.1021/jo01064a060
  • 20. Fukuda H, Nishikawa K, Fukunaga Y, Okuda K, Kodama K et al. Synthesis of fluorescent molecular probes based on cis-cinnamic acid and molecular imaging of lettuce roots. Tetrahedron 2016; 72 (41): 6492-6498. doi: 10.1016/j.tet.2016.08.060
  • 21. Skinner WA, Schelstraete MGM, Baker BR. Potential anticancer agents. XLVIII. Analogs of chlorambucil. VI. Ring isomers. The Journal of Organic Chemistry 1961; 26 (5): 1554-1556. doi: 10.1021/jo01064a060
  • 22. Mirazizi F, Bahrami A, Haghbeen K, Zahiri HS, Bakavoli M et al. Rapid and direct spectrophotometric method for kinetics studies and routine assay of peroxidase based on aniline diazo substrates. Journal of Enzyme Inhibition and Medicinal Chemistry 2016; 31 (6): 1162-1169. doi: 10.3109/14756366.2015.1103234
  • 23. Haba O, Itabashi H, Sato S, Machida K, Koda T et al. UV-induced stable planar alignment of nematic liquid crystals using a polypropyleneimine dendrimer having a mesogen consisting of cinnamate and azobenzene moieties. Molecular Crystals and Liquid Crystals 2015; 610 (1): 201-209. doi: 10.1080/15421406.2015.1026737
  • 24. Folcia CL, Alonso I, Ortega J, Etxebarria J, Pintre I et al. Achiral bent-core liquid crystals with azo and azoxy linkages: structural and nonlinear optical properties and photoisomerization. Chemistry of Materials 2006; 18 (19): 4617-4626. doi: 10.1021/cm060256p
  • 25. Ferreira GR, Garcia HC, Couri MRC, Dos Santos HF, de Oliveira LFC. On the azo/hydrazo equilibrium in Sudan I azo dye derivatives. Journal of Physical Chemistry A 2013; 117 (3): 642-649. doi: 10.1021/jp310229h
  • 26. Esme A, Sagdinc SG, Yildiz SZ. Experimental and theoretical studies on Sudan Red G [1-?(2-?methoxyphenylazo)?- ?2-?naphthol] and its Cu(II) coordination compound. Journal of Molecular Structure 2014; 1075: 264-278. doi: 10.1016/j.molstruc.2014.07.009
  • 27. Ertan N, Gürkan P. Synthesis and properties of some azo pyridone dyes and their Cu (II) complexes. Dyes and Pigments 1997; 33 (2): 137-147. doi: 10.1016/S0143-7208(96)00044-7
  • 28. Mijin D, Božić Nedeljković B, Božić B, Kovrlija I, Lađarević J et al. Synthesis, solvatochromism and biological activity of novel azo dyes bearing 2-pyridone and benzimidazole moieties. Turkish Journal of Chemistry 2018; 42 (3): 896-907. doi: 10.3906/kim-1711-97
  • 29. Cinar M, Coruh A, Karaback M. A comparative study of selected disperse azo dye derivatives based on spectroscopic (FT-IR, NMR and UV-Vis) and nonlinear optical behaviors. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 122: 682-689. doi: 10.1016/j.saa.2013.11.106
  • 30. Dinçalp H, Toker F, Durucasu I, Avcibaşi N, Icli S. New thiopene-based azo ligands containing azo methane group in the main chain for determination of copper(II) ions. Dyes and Pigments 2007; 75 (1): 11-24. doi: 10.1016/j.dyepig.2006.05.015
  • 31. Smitha P, Asha SK, Pillai CKS. Synthesis, characterization and hyperpolarizability measurements of main-chain azobenzene molecules. Journal of Polymer Science, Part A: Polymer Chemistry 2005; 43 (19): 4455-4468. doi: 10.1002/pola.20922
  • 32. Gorelik MV, Rybinov VI, Gladysheva TK. Azo-quinone hydrazone tautomerism of 1-(arylazo)-2-naphthols and 2-(arylazo)-1-naphthols. Zhurnal Obshchei Khimii 1988; 58 (10): 2360-2370.
  • 33. Fedorov LA, Sokolovskii SA. Carbon-13 NMR spectra and azo-quinone hydrazone tautomerism of azo derivates of 1- and 2-naphthol. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 1988; 10: 2271-2277.
  • 34. Fabian WMF, Antonov L, Nedeltcheva D, Kamounah FS, Taylor PJ. Tautomerism in hydroxynaphthaldehyde anils and azo analogues: a combined experimental and computational study. Journal of Physical Chemistry A 2004; 108 (37): 7603-7612. doi: 10.1021/jp048035z
  • 35. Antonov L, Fabian WMF, Taylor PJ. Tautomerism in some aromatic Schiff bases and related azo compounds: an LSER study. Journal of Physical Organic Chemistry 2005; 18 (12): 1169-1175. doi: 10.1002/poc.965
  • 36. Christie RM. Colour Chemistry. Cambridge, UK: The Royal Society of Chemistry, 2015.
  • 37. Chen XC, Tao T, Wang YG, Peng YX, Huang W et al. Azo-hydrazone tautomerism observed from UV-vis spectra by pH control and metal-ion complexation for two heterocyclic disperse yellow dyes. Dalton Transactions 2012; 41 (36): 11107-11115. doi: 10.1039/c2dt31102j
  • 38. Mirković J, Rogan J, Poleti D, Vitnik V, Vitnik Ž et al. On the structures of 5-(4-, 3- and 2-methoxyphenylazo)- 3-cyano-1-ethyl-6-hydroxy-4-methyl-2-pyridone: an experimental and theoretical study. Dyes and Pigments 2014; 104: 160-168. doi: 10.1016/j.dyepig.2014.01.007
  • 39. Mijin D, Božić B, Lađarević J, Matović L, Ušćumlić G et al. Solvatochromism and quantum mechanical investigation of disazo pyridone dye. Coloration Technology 2018; 134 (6): 478-490. doi: 10.1111/cote.12369
  • 40. Zhang L, Cole JM. Can nitro groups really anchor onto TiO2 ? Case study of dye-to- TiO2 adsorption using azo dyes with NO2 substituents. Physical Chemistry Chemical Physics 2016; 18 (28): 19062-19069. doi: 10.1039/c6cp02294d
  • 41. Hug H, Bader M, Mair P, Glatzel T. Biophotovoltaics: natural pigments in dye-sensitized solar cells. Applied Energy 2014; 115: 216-225. doi: 10.1016/j.apenergy.2013.10.055
  • 42. Chen Z, Li F, Huang C. Organic D-π -A dyes for dye-sensitized solar cell. Current Organic Chemistry 2007; 11 (14): 1241-1258. doi: 10.2174/138527207781696008
  • 43. Khan MZH, Al-Mamuna MR, Halderb PK, Aziz MA. Performance improvement of modified dye-sensitized solar cells. Renewable and Sustainable Energy Reviews 2017; 71: 602-617. doi: 10.1016/j.rser.2016.12.087
  • 44. Zhao GJ, Yu F, Zhang MX, Northrop BH, Yang H et al. Substituent effects on the intramolecular charge transfer and fluorescence of bimetallic platinum complexes. Journal of Physical Chemistry A 2011; 115 (24): 6390-6393. doi: 10.1021/jp202825q
  • 45. Luque A, Hegedus S. Handbook of Photovoltaic Science and Engineering. Chichester, UK: John Wiley & Sons Ltd, 2003.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK