Multiwall carbon nanotube paste electrode as a sensor for sensitive determination of deferasirox in the presence of uric acid: application for the analysis of pharmaceutical and biological samples

Multiwall carbon nanotube paste electrode as a sensor for sensitive determination of deferasirox in the presence of uric acid: application for the analysis of pharmaceutical and biological samples

In this work, the electrochemical oxidation of deferasirox at a multiwall carbon nanotube paste electrode (MWCNTPE) was described. The electrochemical behavior of deferasirox was studied using cyclic voltammetry and chronoamperometry techniques and parameters such as charge transfer coefficient (α), the number of electrons involved in the rate-determining step $(n_a)$, and diffusion coefficient (D) were calculated. The capability of the electrode for the determination of deferasirox at low concentrations was investigated using the differential pulse voltammetry technique. It was found that the calibration graph of deferasirox was linear in the concentration range of 0.16–16.5 µM and its detection limit was determined to be approximately 0.1 µM. The diffusion coefficient was calculated to be $1.8 × 10 ^{−6} cm2 s ^{−}1$ for deferasirox. The differential pulse voltammetry method could be used as an effective technique for the determination of deferasirox at the MWCNTPE in the presence of uric acid. The MWCNTPE was successfully used as a sensor for sensitive detection of deferasirox in pharmaceutical and biological samples.

___

  • 1. Desai, N.; Senta, R. Journal of Taibah University for Science 2015, 9, 245-251.
  • 2. Somisetty, V. S. R.; Dhachinamoorthi, D.; Rahaman, S.; Rao, C. M. P. Int. J. ChemTech. Res. 2013, 5, 1861-1868.
  • 3. Borgna-Pignatti, C.; Cappellini, M.; Stefano, P.; Vecchio, G.; Forni, G.; Gamberini, M.; Ghilardi, R.; Origa, R.; Piga, A.; Romeo, M. et al. Ann. N. Y. Acad. Sci. 2005, 1054, 40-47.
  • 4. Borgna-Pignatti, C.; Vergine, G.; Lombardo, T.; Cappellini, M. D.; Cianciulli, P.; Maggio, A.; Renda, D.; Lai, M. E.; Mandas, A.; Forni, G. et al. Br. J. Haematol. 2004, 124, 114-117.
  • 5. Porter, J. B. Br. J. Haematol. 2001, 115, 239-252.
  • 6. Anandakumar, K.; Chinthala, R.; Subhash, V.; Jayamariappan, M. J. Pharm. Res. 2011, 4, 2998-3000.
  • 7. Chakravarthy, V.; Gowrisankar, D. J. Global Trends Pharm. Sci. 2010, 1, 37-45.
  • 8. Kaja, R. K.; Surendranath, K.; Radhakrishnanand, P.; Satish, J.; Satyanarayana, P. Chromatographia 2010, 72, 441-446.
  • 9. Khan, M. A.; Sinha, S.; Todkar, M.; Parashar, V.; Reddy, K. S.; Kulkarni, U. Int. J. Pharm. Biomed. Res. 2011, 2, 128-134.
  • 10. Manzoori, J. L.; Jouyban, A.; Amjadi, M.; Panahi-Azar, V.; Tamizi, E.; Vaez-Gharamaleki, J. Luminescence 2011, 26, 244-250.
  • 11. Sambasivarao, V.; Phani, R.; Seetharaman, R.; Lakshmi, K. IJPI’s Journal of Analytical Chemistry 2011, 1, 31-35.
  • 12. Marathe, G. M.; Pande, V. V.; Patil, P. H.; Mutha, R. E.; Bari, S. B. Indian Drugs 2013, 50, 27-32.
  • 13. Kissinger, P.; Heineman, W. R. Laboratory Techniques in Electroanalytical Chemistry, Revised and Expanded. CRC Press: Boca Raton, FL, USA, 1996.
  • 14. Ozkan, S. A.; Uslu, B.; Aboul-Enein, H. Y. ¨ Crit. Rev. Anal. Chem. 2003, 33, 155-181.
  • 15. Smyth, M. R.; Vos, J. G. Analytical Voltammetry. Elsevier: Amsterdam, the Netherlands, 1992.
  • 16. Wang, J. Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine. VCH: New York, NY, USA, 1996.
  • 17. Hajjizadeh, M.; Jabbari, A.; Heli, H.; Moosavi-Movahedi, A.; Shafiee, A.; Karimian, K. Anal. Biochem. 2008, 373, 337-348.
  • 18. Heli, H.; Yadegari, H.; Karimian, K. J. Exp. Nanosci. 2011, 6, 488-508.
  • 19. Sattarahmady, N.; Heli, H. Sens. Lett. 2012, 10, 794-805.
  • 20. Ensafi, A. A.; Maleh, H. K. Int. J. Electrochem. Sci. 2010, 5, 1484-1495.
  • 21. Apetrei, C.; Rodriguez-M´endez, M.; Parra, V.; Gutierrez, F.; De Saja, J. Sens. Actuators B Chem. 2004, 103, 145-152.
  • 22. Rodr´ıguez-M´endez, M.; Gay, M.; Apetrei, C.; De Saja, J. Electrochim. Acta 2009, 54, 7033-7041.
  • 23. Ruiz-Morales, J.; Canales-V´azquez, J.; Marrero-L´opez, D.; Savvin, S.; N´unez, P.; Dos Santos-Garc´ıa, A.; S´anchezBautista, C.; Pe˜na-Mart´ınez, J. Carbon 2010, 48, 3964-3967.
  • 24. Svancara, I.; Vytˇras, K.; Barek, J.; Zima, J. ˇ Crit. Rev. Anal. Chem. 2001, 31, 311-45.
  • 25. Ensafi, A. A.; Karimi-Maleh, H. J. Electroanal. Chem. 2010, 640, 75-83.
  • 26. Beitollahi, H.; Karimi-Maleh, H.; Khabazzadeh, H. Anal. Chem. 2008, 80, 9848-9851.
  • 27. Mazloum-Ardakani, M.; Beitollahi, H.; Ganjipour, B.; Naeimi, H. Int. J. Electrochem. Sci. 2010, 5, 531-546.
  • 28. Norouzi, P.; Faridbod, F.; Larijani, B.; Ganjali, M. R. Int. J. Electrochem. Sci. 2010, 5, 1213-1224.
  • 29. Treacy, M. J.; Ebbesen, T.; Gibson, J. Nature 1996, 381, 678-680. 30. Bard, A. J.; Faulkner, I. R. Electrochemical Methods, Fundamentals and Applications. Wiley: New York, NY, USA,
  • 2001.
  • 31. Pournaghi-Azar, M. H.; Saadatirad, A. J. Electroanal. Chem. 2008, 624, 293-298.
  • 32. Pournaghi-Azar, M. H.; Ahour, F. Electroanalysis 2010, 22, 2413-2420.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Spectroscopic and thermodynamic approach to the interaction of nonperipherally substituted cationic phthalocyanines with calf thymus (CT)-DNA

Ayfer KALKAN BURAT, Sevgican TUNCER, Behice Şebnem SESALAN, İbrahim ÖZÇEŞMECİ

Application of the Taguchi approach to optimize ZnO synthesis via hydrothermally assisted sol-gel method

Zahra KHAGHANPOUR, Sanaz NAGHIBI

Zahra KHAGHANPOUR, Sanaz NAGHIBI

Jawaher BAIZIG, Anissa Haj ABDALLAH, Amor HADDAD

Adsorptive properties of mesoporous silica modified with Lewis base molecule and its application in the preconcentration of Cu(II), Co(II), and Cd(II) from aqueous media

Janaine do Rocio IVASSECHEN, Luiz Fabricio ZARA, Alexandre de Oliveira JORGETTO, Marcos Henrique Pereira WONDRACEK, Bruno Prior ROCHA, Gustavo Rocha CASTRO, Adrielli Cristina Peres da SILVA, Valber de Albuquerque PEDROSA, Margarida Juri SAEKI

Development of a molecularly imprinted polymer-based electrochemical sensor for tyrosinase

Aysu YARMAN

Effect of pH and β -cyclodextrin on the photophysical properties of lamotrigine

Fakhri YOUSEF, Raed GHANEM, Omar ABU AWWAD

Influence of manganese content on the supercapacitive performance of $PbO_2–MnO_2$ electrodes

Xinghua ZHANG, Zunming LU, Yingwu YAO, Mengyao LI, Feng WEI

$Nickel(II)-PPh_3$ complexes with ONS and ONN chelating thiosemicarbazones: synthesis and inhibition potential on influenza A viruses

Şükriye GÜVELİ, Kadir TURAN, Bahri ÜLKÜSEVEN

Şükriye GÜVELİ, Kadir TURAN, Bahri ÜLKÜSEVEN