Application of the Taguchi approach to optimize ZnO synthesis via hydrothermally assisted sol-gel method

Application of the Taguchi approach to optimize ZnO synthesis via hydrothermally assisted sol-gel method

ZnO powder was synthesized via a hydrothermally assisted sol-gel method. Synthesis variables including Znprecursor type, pH value, time, and temperature of hydrothermal treatment were analyzed using the Taguchi approach. The experimental procedures were defined based on the L9 array for four variables in three levels. The influences of those variables on the response parameters, i.e. crystallite size, crystallinity, band gap energy $(E_g)$, and degradation constants (k), were evaluated. XRD results and $E_g$ values showed that ZnO wurtzite appeared to be the only crystalline phase in the samples. Taguchi analysis predicted that the optimized conditions to achieve the highest photoactivity are as follows: Zn-precursor = zinc acetate, pH = 8, t = 2 h, and T = 150 $^{◦}C$. The optimized sample was synthesized based on the mentioned conditions and characterized. The obtained results confirmed the prediction of the Taguchi method and the highest k value was observed.

___

  • 1. Hasnidawani, J. N.; Azlina, H. N.; Norita, H.; Bonnia, N. N.; Ratim, S.; Ali, E. S. Procedia Chem. 2016, 19, 211-216.
  • 2. Genç, A. Ceram. Int. 2017, 43, 1710-1715.
  • 3. Urgessa, Z. N.; Botha, J. R.; Tankio Djiokap, S. R.; Coleman, C.; Bhattacharyya, S. Physica B (in press).
  • 4. Li, M.; Liu, X. L.; Cui, D. L.; Xu, H. Y.; Jiang, M. H. Mater. Res. Bull. 2006, 41, 1259-1265.
  • 5. Gharagozlou, M.; Naghibi, S. J. Chin. Chem. Soc.-Taip. 2016, 63, 290-297.
  • 6. El-Shazly, A. N.; Rashad, M. M.; Abdel-Aal, E. A.; Ibrahim, I. A.; El-Shahat, M. F.; Shalan, A. E. J. Environ. Chem. Eng. 2016, 4, 3177-3184.
  • 7. Li, W.; Xu, H.; Yu, H.; Zhai, T.; Xu, Q.; Yang, X.; Wang, J.; Cao, B. J. Alloy. Compd. 2017, 706, 461-469.
  • 8. Lim, J. W.; Hwang, D. K.; Lim, K. Y.; Kang, M.; Shin, S. C.; Kim, H. S.; Choi, W. K.; Shim, J. W. Sol. Energ. Mat. Sol. C. 2017, 169, 28-32.
  • 9. Khaghanpour, Z.; Naghibi, S. J. Nanostruct. Chem. 2017, 7, 55-59.
  • 10. Di Mauro, A.; Fragal`a, M. E.; Privitera, V.; Impellizzeri, G. Mat. Sci. Semicon. Proc. 2017, 69, 44-51.
  • 11. Luo, Q.; Xu, P.; Qiu, Y.; Cheng, Z.; Chang, X.; Fan, H. Mater. Lett. 2017, 198, 192-195.
  • 12. Deshmukh, P. R.; Sohn, Y.; Shin, W. G. J. Alloy. Compd. 2017, 711, 573-580.
  • 13. Gupta, V. K.; Sadeghi, R.; Karimi, F. Sensor. Actuat. B-Chem. 2013, 186, 603-609.
  • 14. Gharagozlou, M.; Naghibi, S. Mater. Res. Bull. 2016, 84, 71-78.
  • 15. Guan, W.; Zhang, L.; Wang, C.; Wang, Y. Mat. Sci. Semicon. Proc. 2017, 66, 247-252.
  • 16. Murugadoss, G. J. Mater. Sci. Technol. 2012, 28, 587-593.
  • 17. Kang, W.; Jimeng, X.; Xitao, W. Appl. Surf. Sci. 2016, 360, 270-275.
  • 18. Cao, M.; Wang, F.; Zhu, J.; Zhang, X.; Qin, Y.; Wang, L. Mater. Lett. 2017, 192, 1-4.
  • 19. Samadipakchin, P.; Mortaheb, H. R.; Zolfaghari, A. J. Photoch. Photobio. A 2017, 337, 91-99.
  • 20. Hatamvand, M.; Mirjalili, S. A.; Sharzehee, M.; Behjat, A.; Jabbari, M.; Skrifvars, M. Optik 2017, 140, 443-450.
  • 21. De Marco, L.; Calestani, D.; Qualtieri, A.; Giannuzzi, R.; Manca, M.; Ferro, P.; Gigli, G.; Listorti, A.; Mosca, R. Sol. Energ. Mat. Sol. C. 2017, 168, 227-233.
  • 22. Fragal`a, M. E.; Di Mauro, A.; Cristaldi, D. A.; Cantarella, M.; Impellizzeri, G.; Privitera, V. J. Photoch. Photobio. A 2017, 332, 497-504.
  • 23. Bora, T.; Sathe, P.; Laxman, K.; Dobretsov, S.; Dutta, J. Catal. Today 2017, 284, 11-18.
  • 24. Gu, B.; Pliss, A.; Kuzmin, A. N.; Baev, A.; Ohulchanskyy, T. Y.; Damasco, J. A.; Yong, K. T.; Wen, S.; Prasad, P. N. Biomaterials 2016, 104, 78-86.
  • 25. Hariharan, R.; Senthilkumar, S.; Suganthi, A.; Rajarajan, M. J. Photoch. Photobio. B 2012, 116, 56-65.
  • 26. Senthilkumar, S.; Hariharan, R.; Suganthi, A.; Ashokkumar, M.; Rajarajan, M.; Pitchumani, K. Powder Technol. 2013, 237, 497-505.
  • 27. Ashraf, R.; Riaz, S.; Hussain, S. S.; Naseem, S. Mater. Today-Proc. 2015, 2, 5754-5759.
  • 28. Xian, F.; Zheng, G.; Xu, L.; Kuang, W.; Pei, S.; Cao, Z.; Li, J.; Lai, M. J. Alloy. Compd. 2017, 710, 695-701.
  • 29. Kim, Y.; Kang, S. Acta Mater. 2011, 59, 3024-3031.
  • 30. Ozdal, T.; Taktako˘glu, R.; ¨ Ozdamar, H.; Esen, M.; Tak¸cı, D. K.; Kavak, H. ¨ Thin Solid Films 2015, 592, 143-149.
  • 31. Naghibi, S.; Faghihi Sani, M. A.; Madaah Hosseini, H. R. Ceram. Int. 2014, 40, 4193-4201.
  • 32. Hassanpour, A.; Bogdan, N.; Capobianco, J. A.; Bianucci, P. Mater. Design 2017, 119, 464-469.
  • 33. Kumaresan, N.; Ramamurthi, K.; Ramesh Babu, R.; Sethuraman, K.; Moorthy Babu, S. Appl. Surf. Sci. 2017, 418A, 138-146.
  • 34. Empizo, M. J. F.; Santos-Putungan, A. B.; Yamanoi, K.; Salazar, H. T. Jr.; Anguluan, E. P.; Mori, K.; Arita, R.; Minami, Y.; Luong, M. V.; Shimizu, T. et al. Opt. Mater. 2017, 65, 82-87.
  • 35. Naghibi, S.; Jamshidi, A.; Torabi, O.; Kahrizsangi, R. E. Int. J. Appl. Ceram. Tec. 2014, 11, 901-910.
  • 36. Jamshidi, A.; Nourbakhsh, A. A.; Naghibi, S.; Mackenzie, K. J. D. Ceram. Int. 2014, 40, 263-271.
  • 37. Chung, Y. T.; Ba-Abbad, M. M.; Mohammad, A. W.; Hairom, N. H. H.; Benamor, A. Mater. Design 2015, 87, 780-787.
  • 38. Kim, K. D.; Choi, D. W.; Choa, Y. H.; Kim, H. T. Colloid. Surface. A 2007, 311, 170-173.
  • 39. Ohira, T.; Yamamoto, O. Chem. Eng. Sci. 2012, 68, 355-361.
  • 40. Pourrahimi, A. M.; Liu, D.; Pallon, L. K. H.; Andersson, R. L.; Martinez Abad, A.; Lagaron, J. M.; Hedenqvist, M. S.; Strom, V.; Gedde, U. W.; Olsson, R. T. RSC Adv. 2014, 4, 35568-35577.
  • 41. Ahsanulhaq, Q.; Umar, A.; Hahn, Y. B. Nanotechnology 2007, 18, 115603.
  • 42. Wilson, H. F.; Tang, C.; Barnard, A. S. J. Phys. Chem. C. 2016, 120, 9498-9505.
  • 43. Xu, L.; Hu, Y. L.; Pelligra, C.; Chen, C. H.; Jin, L.; Huang, H.; Sithambaram, S.; Aindow, M.; Joesten, R.; Suib, S. L. Chem. Mater. 2009, 21, 2875-2885.
  • 44. Alias, S. S.; Ismail, A. B.; Mohamad, A. A. J. Alloy. Compd. 2010, 499, 231-237.
  • 45. Søndergaard, M.; Bøjesen, E. D.; Christensen, M.; Iversen, B. B. Cryst. Growth Des. 2011, 11, 4027-4033.
  • 46. McBride, R. A.; Kelly, J. M.; Mccormack, D. E. J. Mater. Chem. 2003, 13, 1196-1201.
  • 47. Williamson, G. K.; Hall, W. H. Acta Metall. Mater. 1953, 1, 22-31.
  • 48. Torabi, O.; Naghibi, S.; Golabgir, M. H.; Jamshidi, A. J. Chin. Chem. Soc.-Taip. 2016, 63, 379-384.
  • 49. Naghibi, S.; Sheikhi, E. J. Adv. Mater. Proc. 2016, 4, 46-55.
  • 50. Viezbicke, B. D.; Patel, S.; Davis, B. E.; Birnie, D. P. Phys. Status Solidi B 2015, 252, 1700-1710.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Simultaneous determination of copper(II) and zinc(II) via simple acid-base titrimetry using glass pH electrode

Adnan KENAR, Emine Gül CANSU ERGÜN

Physicochemical characterization of different cellulose polymorphs/graphene oxide composites and their antibacterial activity

Sherif Mohamed Abdel Salam KESHK, Ibrahim Sayed YAHIA

Bedriye Seda Kurşun AKTAR, Emine Elçin ORUÇ-EMRE, İbrahim DEMİRTAŞ, Ayşe Şahin YAĞLIOĞLU, Ayşegül Karaküçük İYİDOĞAN, Çağlar GÜLER, Şevki ADEM

Oxime-containing acetylcholinesterase reactivators and their complexes with Pd(II) and Pt(II) ions: recent developments

Ahmed NEDZHIB, Liudmil ANTONOV, Ivayla PANTCHEVA

Merve ÇINAR, Yasemin İşlek COŞKUN, Tülin Deniz ÇİFTÇİ

Tetrahydronaphthalene as a precursor of new series of chalcones, flavanones, and flavones

Ahmed MEDDEB, Ghalia BOUHALLEB, Farhat REZGUI, Julien LEGROS

Voltammetric determination of vanillin in commercial food products using overoxidized poly(pyrrole) film-modified glassy carbon electrodes

Şükriye ULUBAY KARABİBEROĞLU, Çağrı Ceylan KOÇAK

Removal of five cationic dyes using a resin coated with nickel/nickel boride nanoparticles

Merve ÇINAR, Tülin DENİZ ÇİFTCİ, Yasemin İŞLEK COŞKUN

Arif KIVRAK, Hüseyin Bekir YILDIZ, Selahattin GÖKYER, Buket ÇARBAŞ

Spectroscopic and thermodynamic approach to the interaction of nonperipherally substituted cationic phthalocyanines with calf thymus (CT)-DNA

Ayfer KALKAN BURAT, Sevgican TUNCER, Behice Şebnem SESALAN, İbrahim ÖZÇEŞMECİ