Influence of manganese content on the supercapacitive performance of $PbO_2–MnO_2$ electrodes

Influence of manganese content on the supercapacitive performance of $PbO_2–MnO_2$ electrodes

$PbO_2–MnO_2$ electrodes were prepared by electrochemical codeposition methods. The electrodes were characterized by scanning electron microscope, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The content of manganese in the electrodes increased with the increase in manganese ion concentration in the solution, which can reach 48.4%. The codeposition of manganese decreased the grain sizes and formed the porous structure. Cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the influence of manganese content in the electrodes on the specific capacitive performance of $PbO_2–MnO_2$ electrodes. The specific capacitance of $PbO_2–MnO_2$ (48.4%) electrodes could reach $374.5 F g ^{−1}$ . The excellent specific capacitance can be ascribed to the porous structure and the synergy of excellent conductivity of lead dioxide and the good specific capacitance of manganese dioxide.

___

  • 1. Yan, J.; Qian, W.; Tong, W.; Fan, Z.; Adv. Energy Mater. 2014, 4, 157-164.
  • 2. Wang, G.; Zhang, L.; Zhang, J. J. Chem. Soc. Rev. 2012, 41, 797-828.
  • 3. Perret, P.; Khani, Z.; Brousse, T.; B´elanger, D.; Guay, D. Electrochim. Acta 2011, 56, 8122-8128.
  • 4. Egan, D. R. P.; Low, C. T. J.; Walsh, F. C. J. Power Sources 2011, 196, 5725 -5730.
  • 5. Saez, V.; Marchante, E.; D´ıez, M. I.; Esclapez, M. D.; Bonete, P.; Lana-Villarreal, T.; Garcıa, J. G.; Mostany, J. Mater Chem. Phys. 2011, 125, 46-54.
  • 6. Moncada, A.; Piazza, S.; Sunseri, C.; Inguanta, R. J. Power Sources 2015, 215, 181-188.
  • 7. Yang, C. J.; Park, S. M. Electrochim. Acta 2013, 108, 86-94.
  • 8. Velichenko, A. B.; Amadelli, R.; Gruzdeva, E. V.; Luk’Yanenko, T. V.; Danilov, F. I. J. Power Sources 2009, 191, 103-110.
  • 9. Ghasemi, S.; Mousavi, M. F.; Karami, H.; Shamsipur, M.; Kazemi, S. H. Electrochim. Acta 2006, 52, 1596-1602.
  • 10. Yu, N. F.; Gao, L. J. Electrochem. Commun. 2009, 11, 220-222.
  • 11. Li, X. H.; Pletcher, D.; Walsh, F. C. Chem. Soc. Rev. 2011, 40, 3879-3894.
  • 12. Dan, Y. Y.; Lin, H. B.; Liu, X. L.; Lu, H. Y.; Zhao, J. Z.; Shi, Z.; Guo, Y. P. Electrochim. Acta 2012, 83, 175-182.
  • 13. Toupin, M.; Brousse, T., B´elanger, D. Chem. Mater. 2004, 16, 3184-3190.
  • 14. Dalili, N.; Clark, M. P.; Davari, E.; Ivey, D. G. J. Power Sources 2016, 328, 318-328.
  • 15. Cao, J. Y.; Li, X. H.; Wang, Y. M.; Walsh, F. C.; Ouyang, J. H.; Jia, D. C.; Zhou, Y. J. Power Sources 2015, 293, 657-674.
  • 16. Yang, H. T.; Chen, B. M.; Liu, H. R.; Guo, Z. C.; Zhang, Y. C.; Li, X. L.; Xu, R. D. Int. J. Hydrogen Energ. 2014, 39, 3087-3099.
  • 17. Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; Mcevoy, T. M.; Bourg, M. E.; Lubers, A. M. Chem. Soc. Rev. 2009, 38, 226-252.
  • 18. Zhang, H. H.; Gu, J. N.; Tong, J.; Hu, Y. F.; Guan, B.; Hu, B.; Zhao, J.; Wang, C. Y. Chem. Eng. J. 2016, 286, 139-149.
  • 19. Shmychkova, O.; Luk’Yanenko, T.; Amadelli, R.; Velichenko, A. J. Electroanal. Chem. 2014, 717-718, 196-201.
  • 20. Guo, W. H.; Liu, T. J.; Jiang, P.; Zhang, Z. J. J. Colloid Interface Sci. 2015, 437, 304-310.
  • 21. Yu, N. F.; Gao, L. J.; Zhao, S. H.; Wang, Z. D. Electrochim. Acta 2009, 54, 3835-3841.
  • 22. Zhang, W. L.; Lin, H. B.; Kong, H. S.; Lu, H. Y.; Yang, Z.; Liu, T. T. Electrochim. Acta 2014, 139, 209-216.
  • 23. Trasatti, S.; Petrii, O. A. J. Electroanal. Chem. 1992, 327, 353-376.
  • 24. Montilla, F.; Morall´on, E.; Battisti, A. D.; Vazquez, J. L. J. Phys. Chem. B 2004, 108, 5036-5043.
  • 25. Ardizzone, S.; Fregonara, G.; Trasatti, S. Electrochim. Acta 1990, 35, 263-267.
  • 26. Xu, L.; Li, M.; Xu, W. Electrochim. Acta. 2015, 166, 64-72.
  • 27. Bai, Y.; Wang, R. R.; Lu, X. Y.; Sun, J.; Gao, L. J. Colloid Interface Sci. 2016, 468, 1-9.
  • 28. Li, M.; Ma, K. Y.; Cheng, J. P.; Lv, D. H.; Zhang, X. B. J. Power Sources 2015, 286, 438-444.
  • 29. Huang, K. J.; Zhang, J. Z.; Cai, J. L. Electrochim. Acta 2015, 180, 770-777.
  • 30. Yang, J.; Lian, L. F.; Ruan, H. C.; Xie, F. Y.; Wei, M. D. Electrochim. Acta 2014, 136, 189-194.
  • 31. Yang, X.; Qu, F. Y.; Niu, H.; Wang, Q.; Yan, J.; Fan, Z. J. Electrochim Acta 2015, 180, 287-294.
  • 32. Guo, W. H.; Liu, T. J.; Jiang, P.; Zhang, Z. J. J. Colloid Interface Sci. 2015, 437, 304-310.
  • 33. Li, H. L.; Jiang, L. X.; Cheng, Q. L.; He, Y.; Pavlinek, V.; Saha, P.; Li, C. Z. Electrochim. Acta 2015, 164, 252-259.
  • 34. Li, Y. J.; Wang, G. L.; Ye, K.; Cheng, K.; Pan, Y.; Yan, P.; Yin, J. L.; Cao, D. X. J. Power Sources 2014, 271, 582-588.
  • 35. Yao, Y. W.; Jiao, L. M.; Yu, N. C.; Guo, F.; Chen, X. J. Solid State Electrochem. 2016, 20, 353-359.