Development of a molecularly imprinted polymer-based electrochemical sensor for tyrosinase

Development of a molecularly imprinted polymer-based electrochemical sensor for tyrosinase

For the first time a molecularly imprinted polymer (MIP)-based sensor for tyrosinase is described. This sensor is based on the electropolymerization of scopoletin or o-phenylenediamine in the presence of tyrosinase from mushrooms, which has a high homology to the human enzyme. The template was removed either by treatment with proteinase K or by alkaline treatment. The measuring signal was generated either by measuring the formation of a product by the target enzyme or by evaluation of the permeability of the redox marker ferricyanide. The o-phenylenediamine-based MIP sensor has a linear measuring range up to 50 nM of tyrosinase with a limit of detection of 3.97 nM $(R^2 = 0.994)$ and shows good discrimination towards other proteins, e.g., bovine serum albumin and cytochrome c.

___

  • 1. Scheller, F.; Schubert, F. Biosensors, Volume 11; Elsevier Science Publishers: Amsterdam, Netherlands, 1992.
  • 2. Turner, A. P. F. Chem. Soc. Rev. 2013, 42, 3184-3196.
  • 3. Menger, M.; Yarman, A.; Erd˝ossy, J.; Yildiz, H. B.; Gyurcs´anyi, R. E.; Scheller, F. W. Biosensors 2016, 6, 35.
  • 4. Tuerk, C.; Gold, L. Science 1990, 249, 505-510.
  • 5. Bunka, D. H.; Stockley, P. G. Nat. Rev. Microbiol. 2006, 4, 588-596.
  • 6. Wulff, G.; Sarhan, A. Angew. Chem. Int. Ed. Engl. 1972, 11, 341-344.
  • 7. Shea, K.; Thompson, E. J. Am. Chem. Soc. 1980, 102, 3148-3156.
  • 8. Arshady, R.; Mosbach, K. Macromol. Chem. Phys. 1981, 182, 687-692
  • 9. Hayden, O.; Lieberzeit, P. A.; Blaas, D.; Dickert, F. L. Adv. Funct. Mater. 2006, 16, 1269-1278.
  • 10. Saylan, Y.; Yilmaz, F.; Özgür, E.; Derazshamshir, A.; Yavuz, H.; Denizli, A. Sensors 2017, 17, 898.
  • 11. Haupt, K.; Mosbach, K. Trends Biotechnol. 1998, 16, 468-475.
  • 12. Wulff, G. Angew. Chem. 1995, 107, 1958-1979.
  • 13. Berti, F.; Todros, S.; Lakshmi, D.; Whitcombe, M. J.; Chianella, I.; Ferroni, M.; Piletsky, S. A.; Turner, A. P. F.; Marrazza, G. Biosens. Bioelectron. 2010, 26, 497-503.
  • 14. Huang, X.; Yin, Y.; Liu, Y.; Bai, X.; Zhang, Z.; Xu, J.; Shen, J.; Liu, J. Biosens. Bioelectron. 2009, 25, 657-660.
  • 15. Neto, J. R. M.; Santos, W. J. R.; Lima, P. R.; Tanaka, S. M. C. N.; Tanaka, A. A.; Kubota, L. T. Sensor. Actuat. B-Chem. 2011, 152, 220-225.
  • 16. Antuna-Jimenez, D.; Blanco-L´opez, M. C.; Miranda-Ordieres, A. J.; Lobo-Castanon, M. J. Polymer 2014, 55, 1113-1119.
  • 17. Yarman, A.; Scheller, F. W. Sensors 2014, 14, 7647-7654.
  • 18. Özcan, L.; Şahin, Y. Sensor. Actuat. B-Chem. 2007, 127, 362-369.
  • 19. Yarman, A.; Scheller, F. W. Angew. Chem. Int. Ed. Engl. 2013, 52, 11521-11525.
  • 20. Yarman, A.; Scheller, F. W. Electroanalysis 2016, 28, 2222-2227.
  • 21. Altintas, Z.; Chianella, I.; Da Ponte, G.; Paulussen, S.; Gaeta, S.; Tothill, I. E. Chem. Eng. J. 2016, 300, 358-366.
  • 22. Uygun, Z. O.; Dilgin, Y. Sensor. Actuat. B-Chem. 2013, 188, 78-84.
  • 23. Lach, P.; Sharma, P. S.; Golebiewska, K.; Cieplak, M.; D’Souza, F.; Kutner, W. Chem. Eur. J. 2017, 23, 1942-1949.
  • 24. Uludağ, Y.; Piletsky, S. A.; Turner, A. P. F.; Cooper, M. A. FEBS J. 2007, 274, 5471-5480.
  • 25. Gomez, L. P. C.; Spangenberg, A.; Ton, X. A.; Fuchs, Y.; Bokeloh, F.; Malval, J. P.; Tse Sum Bui, B.; Thuau, D.; Ayela, C.; Haupt, K.; et al. Adv. Mater. 2016, 28, 5931-5937.
  • 26. Takeuchi, T.; Hishiya, T. Org. Biomol. Chem. 2008, 6, 2459-2467.
  • 27. Li, S.; Cao, S.; Whitcombe, M. J.; Piletsky, S. A. Prog. Polym. Sci. 2014, 39, 145-163.
  • 28. Erdössy, J.; Horv´ath, V.; Yarman, A.; Scheller, F. W.; Gyurcs´anyi, R. E. TrAC Trends Anal. Chem. 2016, 79, 179-190.
  • 29. Yarman, A.; Jetzschmann, K. J.; Neumann, B.; Zhang, X.; Wollenberger, U.; Cordin, A.; Haupt, K.; Scheller, F. W. Chemosensors 2017, 5, 11.
  • 30. Sharma, P. S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W. Anal. Bioanal. Chem. 2012, 402, 3177-3204.
  • 31. Peter, M. G.; Wollenberger, U. In Frontiers in Biosensorics I; Scheller, F. W; Schubert, F.; Fedrowitz, J., Eds. Birkh¨auser: Basel, Switzerland, 1997, pp. 63-82.
  • 32. Shleev, S.; Tkac, J.; Christenson, A.; Ruzgas, T.; Yaropolov, A. I.; Whittaker, J. W.; Gorton, L. Biosens. Bioelectron. 2005, 20, 2517-2554.
  • 33. Yildiz, H. B.; Castillo, J.; Guschin, D. A.; Toppare, L.; Schuhmann, W. Microchim. Acta 2007, 159, 27-34.
  • 34. Liu, S.; Yu, J.; Ju, H. J. Electroanal. Chem. 2003, 540, 61-67.
  • 35. Vicentini, F. C.; Garcia, L. L.; Figueiredo-Filho, L. C.; Janegitz, B. C.; Fatibello-Filho, O. Enzyme Microb. Technol. 2016, 84, 17-23.
  • 36. Pena, N.; Reviejo, A. J.; Pingarron, J. M. Talanta 2001, 55, 179-187.
  • 37. Vidal, J. C.; Esteban, S.; Gil, J.; Castillo, J. R. Talanta 2006, 68, 791-799.
  • 38. Biegunski, A. T.; Michota, A.; Bukowska, J.; Jackowska, K. Bioelectrochemistry 2006, 69, 41-48.
  • 39. Takashima, W.; Kaneto, K. React. Funct. Polym. 2004, 59, 163-169.
  • 40. V´edrine, C.; Fabiano, S.; Tran-Minh, C. Talanta 2003, 59, 535-544.
  • 41. Guan, Y.; Liu, L.; Chen, C.; Kang, X.; Xie, Q. Talanta 2016, 160, 125-132.
  • 42. Fritea, L.; Le Goff, A.; Putaux, J. L.; Tertis, M.; Cristea, C.; Sandulescu, R.; Cosnier, S. Electrochim. Acta 2015, 178, 108-112.
  • 43. Streffer, K.; Kaatz, H.; Bauer, C.G.; Makower, A.; Schulmeister, T.; Scheller, F. W.; Peter, M. G.; Wollenberger, U. Anal. Chim. Acta 1998, 362, 81-90.
  • 44. Tortolini, C.; Bollella, P.; Antiochia, R.; Favero, G.; Mazzei, F. Sens. Actuat. B-Chem. 2016, 224, 552-558.
  • 45. Kurbanoglu, S.; Ozkan, S. A.; Merko¸ci, A. Biosens. Bioelectron. 2017, 89, 886-898. Mossberg, M.; Vernick, S.; Ortenberg, R.; Markel, G.; Diamand, Y. S.; Rishpon, J. Electroanalysis 2014, 26, 1671-1675.
  • 46. Bosserdt, M.; Erdossy, J.; Lautner, G.; Witt, J.; Köhler, K.; Gajovic-Eichelmann, N.; Yarman, A.; Wittstock, G.; Scheller, F. W.; Gyurcsanyi, R. E. Biosens. Bioelectron. 2015, 73, 123-129.
  • 47. Valero, E.; Varon, R.; Garc´ıa-Carmona, F. Biol. Chem. 2002, 383, 1931-1939.
  • 48. Yarman, A.; Turner, A. P. F.; Scheller, F. W. In Nanosensors for Chemical and Biological Applications, Honeychurch K. C., Ed. Woodhead Publishing Limited: Amsterdam, Netherlands, 2014, pp. 125-149.
  • 49. Peng, L.; Yarman, A.; Jetzschmann, K. J.; Jeoung, J. H.; Schad, D.; Dobbek, H.; Wollenberger, U.; Scheller, F. W. Sensors 2016, 16, 272.
  • 50. Jetzschmann, K. J.; J´agerszki, G.; Dechtrirat, D.; Yarman, A.; Gajovic-Eichelmann, N.; Gilsing, H. D.; Schulz, B.; Gyurcsanyi, R. E.; Scheller, F. W. Adv. Funct. Mater. 2015, 25, 5178-5183.
  • 51. Dechtrirat, D.; Gajovic-Eichelmann, N.; Bier, F. F.; Scheller, F. W. Adv. Funct. Mater. 2014, 24, 2233-2239.
  • 52. Stojanovic, Z.; Erdossy, J.; Keltai, K.; Scheller, F. W.; Gyurcs´anyi, R. E. Anal. Chim. Acta 2017, 977, 1-9.
  • 53. Cai, D.; Ren, L.; Zhao, H.; Xu, C.; Zhang, L.; Yu, Y.; Wang, H.; Lan, Y.; Roberts, MF.; Chuang J. H.; et al. Nat. Nanotechnol. 2010 5, 597-601.
  • 54. Cieplak, M.; Szwabinska, K.; Sosnowska, M.; Chandra, B. K. C.; Borowicz, P.; Noworyta, K.; D’Souza, F.; Kutner, W. Biosens. Bioelectron. 2015 74, 960-966.
  • 55. Karimian, N.; Vagin, M.; Zavar, M. H. A.; Chamsaz, M.; Turner, A. P. F.; Tiwari, A. Biosens. Bioelectron. 2013 50, 492-498.