Linear assembly and 3D networks of peptide modified gold nanoparticles

The charge and size of molecules chemically attached to nanoparticles (NPs) play an important role in their interaction behavior in suspensions. Gold nanoparticles (AuNPs) were modified systematically with peptides and the modification was verified with surface-enhanced Raman scattering (SERS). The behavior of the modified AuNPs in suspension and at the liquid--solid interface was monitored using small angle X-ray scattering (SAXS), UV/Vis spectroscopy and dynamic light scattering (DLS) in suspension, and atomic force microscopy (AFM) at the solid--liquid interface. It was found that while negatively charged peptide modified AuNPs behave very similar to citrate reduced AuNPs due to their negatively charged surface, positively charged peptide modified AuNPs showed significantly different assembly/aggregation properties in suspension. The formation of linear assemblies of positively charged peptide (CKRHSKRHRSKRHSKRHSKRHSKR) modified AuNPs was clearly observed from the AFM analysis of the droplet areas of its colloidal suspension. The combined analyses of data obtained from the employed techniques suggest that the positively charged large peptide modified AuNPs can form linear and 3D-like networks in the suspension. This study reveals important information regarding the surface property dependent behavior of NPs that may help in efforts to build higher structures using NPs as building blocks.

Linear assembly and 3D networks of peptide modified gold nanoparticles

The charge and size of molecules chemically attached to nanoparticles (NPs) play an important role in their interaction behavior in suspensions. Gold nanoparticles (AuNPs) were modified systematically with peptides and the modification was verified with surface-enhanced Raman scattering (SERS). The behavior of the modified AuNPs in suspension and at the liquid--solid interface was monitored using small angle X-ray scattering (SAXS), UV/Vis spectroscopy and dynamic light scattering (DLS) in suspension, and atomic force microscopy (AFM) at the solid--liquid interface. It was found that while negatively charged peptide modified AuNPs behave very similar to citrate reduced AuNPs due to their negatively charged surface, positively charged peptide modified AuNPs showed significantly different assembly/aggregation properties in suspension. The formation of linear assemblies of positively charged peptide (CKRHSKRHRSKRHSKRHSKRHSKR) modified AuNPs was clearly observed from the AFM analysis of the droplet areas of its colloidal suspension. The combined analyses of data obtained from the employed techniques suggest that the positively charged large peptide modified AuNPs can form linear and 3D-like networks in the suspension. This study reveals important information regarding the surface property dependent behavior of NPs that may help in efforts to build higher structures using NPs as building blocks.

___

  • Chung, S. W.; Ginger, D. S.; Morales, M. W.; Zhang, Z. F.; Chandrasekhar, V.; Ratner, M. A.; Mirkin, C. A.
  • Small 2005, 1, 64–69.
  • Liu, S. T.; Maoz, R.; Sagiv, J. Nano Lett. 2004, 4, 845–851.
  • Fendler, J. Chem. Mater. 2001, 13, 3196–3210.
  • Whitesides, G. M.; Boncheva, M. PNAS 2002, 99, 4769–4774.
  • Loweth, C. J.; Caldwell, W. B.; Peng, X. G.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Edit. 1999, 38, 1808–1812.
  • Coomber, D.; Bartczak, D.; Gerrard, S. R.; Tyas, S.; Kanaras, A. G.; Stulz, E. Langmuir 2010, 26, 13760–13762.
  • Seela, F.; Budow, S. Nucleosides Nucleic Acids 2007, 26, 755–759.
  • Teixido, M.; Giralt, E. J. Pept. Sci. 2007, 14, 163–73.
  • Yuan, B.; Xing, L.; Zhang, Y. D.; Lu, Y.; Mai, Z. H.; Li, M. J. Am. Chem. Soc. 2007, 129, 11332–11333.
  • Jeong, H. S.; Kyouichi, A.; Bong, K. L.; Dong, G. K.; Yeon, K. K.; Kyoung, R. K.; Hea, Y. L.; Tomoji, K.; Hyung,
  • J. C. Bioconjugate Chem. 2007, 18, 2197–2201.
  • Aili, D.; Enander, K.; Rydberg, J.; Nesterenko, I.; Bj¨orefors, F.; Baltzer, L.; Liedberg, B. J. Am. Chem. Soc. 2008, 130, 5780–5788.
  • Si, S.; Mandal, T. K. Langmuir 2007, 23, 190–195.
  • Ding, Y.; Xia, X. H.; Zhai, H. S. Chemistry 2007, 13, 4197–4202.
  • Mankar, S.; Anoop, A.; Sen, S.; Maji, S. K. Nano Reviews 2011, 2, 6032–6044.
  • Basu, S.; Ghosh, S. K.; Kundu, S.; Panigrahi, S.; Pande, S.; Jana, S.; Pal, T. J. Colloid Interface Sci. 2007, 313, 724–734. 16.Tullman, J. A.; Finney, W. F.; Lin, Y. J.; Bishnoi, S. W. Plasmonics 2007, 2, 119–127.
  • Levy, R.; Thanh, N. T.; Doty, R. C.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J.; Brust, M.; Fernig, D.G. J. Am.
  • Chem. Soc. 2004, 126, 10076–10084.
  • Chen, C. L.; Zhang, P. J.; Rosi, N. L. J. Am. Chem. Soc. 2008, 130, 13555–13557.
  • York, NY, USA, 1987. 25.Shtykova, E. V.; Malyutin, A.; Dyke, J.; Stein, B.; Konarev, P. V.; Dragnea, B.; Svergun, D. I.; Bronstein, L. M.
  • Gearheart, L. A.; Ploehn, H. J.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 12609–12615. 34.Movasaghi, Z.; Rehman, S.; Rehman, I. U. Applied Spectroscopy Reviews 2007, 42, 493–541.
  • Stewart, S.; Fredericks, P. M. Spectrochimica Acta Part A 1999, 55, 1615–1640.
  • Graf, P.; Mantion, A.; Foelske, A.; Shkilnyy, A.; Masic, A.; Thunemann, A. E.; Taubert, A. Chem. Eur. J. 2009, 15, 5831–5844.
  • Garrido, C.; Aliaga, A. E.; Jeria, J. S. J.; Clavijo, R. E.; Vallette, M. M. C.; Cortes, S. S. Journal of Raman
  • Spectroscopy 2010, 41, 1149–1155.
  • Horovitz, O.; Mocanu, A.; Tomoaia, G.; Bobos, L.; Dubert, D.; Daian, I.; Yusanis, T.; Cotisel, M. T. Stud. Univ.
  • Savage, A. C.; Pikramenou, Z. Chem. Commun. 2011, 47, 6431–6433. 44.Juan, S. X.; Dan, L.; Jing, X.; Shawn, W.; Qiang, W. Z.; Hong, C. Chin. Sci. Bull. 2012, 57, 1109–1115.
  • Brioude, A.; Jiang, X. C.; Pileni, M. P. J. Phys. Chem. B 2005, 109, 13138–13142.
  • Fratzl, P. J. Appl. Cryst. 2003, 36, 397–404.
  • Maki, K. L.; Kumar, S. Langmuir 2011, 27, 11347–11363.
  • Lee, P. C.; Meisel, D. J. Phys. Chem 1982, 86, 3391–3395. 49.Blanchet, C. E.; Zozulya, A. V.; Kikhney, A. G.; Franke, D.; Konarev, P. V.; Shang, W.; Klaering, R.; Robrahn,
  • B.; Hermes, C.; Cipriani, F.; et al. J. Appl. Cryst. 2012, 45, 489–495.
  • Konarev, P. V.; Volkov, V. V.; Sokolova, A. V.; Koch, M. H. J.; Svergun, D. I. J. Appl. Cryst. 2003, 36, 1277–1282. 51.Svergun, D. I. J. Appl. Cryst. 1992, 25, 495–503.
  • Franke, D.; Svergun, D. I. J. Appl. Cryst. 2009, 42, 342–346.
  • Petoukhov, M. V.; Svergun, D. I. Biophys. J. 2005, 89, 1237–1250.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Linear assembly and 3D networks of peptide modified gold nanoparticles

Şaban KALAY, Clement BLANCHET, Mustafa CULHA

Graphene oxide magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution

Kadem MERAL, Önder METIN

Synthesis of tertiary propargylic phosphonates by addition of trialkynylaluminum reagents to acyl phosphonates and investigation of their antimicrobial activities

Mohammad Shakhawoat HOSSAIN, Sıdıka POLAT ÇAKIR\dag, Ayşe Betül KARADUMAN

Rosmarinic acid: a potent carbonic anhydrase isoenzymes inhibitor

Meryem TOPAL, İlhami GÜLÇİN

Performance degradation of LixFePO4 (x = 0, 1) induced by postannealing

Xiaofei SUN, Youlong XU, Xiaoyu ZHENG, Xiangfei MENG, Rui ZHANG

Synthesis of novel triazoles bearing 1,2,4-oxadiazole and phenylsulfonyl groups by 1,3-dipolar cycloaddition of some organic azides and their biological activities

Yaşar DÜRÜST, Hamza KARAKUŞ, Muhsine Zeynep YAVUZ, Ali Akçahan GEPDİREMEN

Graphene oxide--magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution

Kadem MERAL, Önder METİN

QSAR study of chalcone derivatives as anti-Leishmania agents

Maryam IMAN, Asghar DAVOOD, Nasimossadat BANAROUEI

Binding of flavanone with b-CD/ctDNA: a spectroscopic investigation

Chandrasekaran SOWRIRAJAN, Sameena YOUSUF, Muthu Vijayan Enoch İsrael VIJAYARAJ

Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles

Yasmeen JUNEJO, Abdulhadi BAYKAL