Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection

Here we describe the detailed characterization of gold nanoparticle (Au Np) functionalized surfaces as a biosensing platform by studying a model streptavidin (SA)-biotin interaction. Conjugation of SA on Au Np immobilized on silicon (Si) and quartz surfaces and its interaction with biotin were characterized by X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy, circular dichromism (CD) spectroscopy, and contact angle measurements. The immobilization method and atomic concentrations of Si 2p, Au 4f, S 2p, C 1s, N 1s, and O 1s of the resulting SA-biotin modified Si surface were determined by XPS. The CD spectrum and confocal microscopy imaging confirmed that step-by-step modification and bioconjugation can be monitored successfully. Such detailed and well-defined step-by-step characterization provides good information about the surface properties of biosensor platforms. In addition, the LSPR sensing ability of the Au Np based platforms was studied by using a model SA-biotin system. A 20 nm spectral red shift was detected when 150 nM SA was immobilized on to the Au Nps surface using the direct incubation/binding method on to the dry surface instead of the flow-injection method. The same platforms were also used to detect the CA 125 antibody-antigen system. Large spectral red shifts are very promising in terms of using these surfaces as LSPR biosensors.

Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection

Here we describe the detailed characterization of gold nanoparticle (Au Np) functionalized surfaces as a biosensing platform by studying a model streptavidin (SA)-biotin interaction. Conjugation of SA on Au Np immobilized on silicon (Si) and quartz surfaces and its interaction with biotin were characterized by X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy, circular dichromism (CD) spectroscopy, and contact angle measurements. The immobilization method and atomic concentrations of Si 2p, Au 4f, S 2p, C 1s, N 1s, and O 1s of the resulting SA-biotin modified Si surface were determined by XPS. The CD spectrum and confocal microscopy imaging confirmed that step-by-step modification and bioconjugation can be monitored successfully. Such detailed and well-defined step-by-step characterization provides good information about the surface properties of biosensor platforms. In addition, the LSPR sensing ability of the Au Np based platforms was studied by using a model SA-biotin system. A 20 nm spectral red shift was detected when 150 nM SA was immobilized on to the Au Nps surface using the direct incubation/binding method on to the dry surface instead of the flow-injection method. The same platforms were also used to detect the CA 125 antibody-antigen system. Large spectral red shifts are very promising in terms of using these surfaces as LSPR biosensors.

___

  • 1. Luppa, P. B.; Sokoll, L. J.; Chan, D. W. Clin. Chim. Acta 2001, 314, 1–26.
  • 2. Boujday, S.; Bantegnie, A.; Briand, E.; Marnet, P. G.; Salmain, M.; Pradier, C. M. J. Phys. Chem. B 2008, 112, 6708–6715.
  • 3. Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685–1706.
  • 4. Lalander, C. H.; Zheng, Y.; Dhuey, S.; Cabrini, S.; Bach, U. ACS Nano. 2010, 4, 6153–6161.
  • 5. Morel, A. L.; Boujday, S.; M´ethivier, C.; Krafft, J. M.; Pradier, C. M. Talanta 2011, 85, 35–42.
  • 6. Morel, A. L.; Volmant, R. M.; M´ethivier, C.; Krafft, J. M.; Boujday, S.; Pradier, C. M. Colloid. Surface B 2010, 81, 304–312.
  • 7. He, L.; Musick, M. D.; Nicewarner, S. R.; Salinas, F. G.; Benkovic, S. J.; Natan, M. J.; Keating, C. D. J. Am. Chem. Soc. 2000, 122, 9071–9077.
  • 8. Ma, Z.; Sui, S. F. Angew. Chem. Int. Edit. 2002, 41, 2176–2179.
  • 9. Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Langmuir 2008, 24, 5233–5237.
  • 10. Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267–297.
  • 11. Yonzon, C. R.; Stuart, D. A.; Zhang, X.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P. Talanta 2005, 67, 438–448.
  • 12. Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P. J. Am. Chem. Soc. 2005, 127, 2264–2271.
  • 13. Dahlin, A. B.; Tegenfeldt, J. O.; H¨o¨ok, F. Anal. Chem. 2006, 78, 4416–4423.
  • 14. Stuart, D. A.; Haes, A. J.; McFarland, A. D.; Nie, S.; Van Duyne, R. P. Proceedings of SPIE-The International Society for Optical Engineering 2004, 5327, 60–73.
  • 15. Yonzon, C. R.; Jeoung, E.; Zou, S.; Schatz, G. C.; Mrksich, M.; Van Duyne, R. P. J. Am. Chem. Soc. 2004, 126, 12669–12676.
  • 16. Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596–10604.
  • 17. Green, N. M. In Advances in Protein Chemistry; Anfinsen, C. B; Edsall, J. T.; Richards, F. M., Eds.; Academic Press: New York, NY, USA, 1975; Vol. 29, p 85–133.
  • 18. Chuang, Y.; Lee, C. Y.; Lu, S. H.; Wang, S. C.; Chau, L. K.; Hsieh, W. H. Anal. Chem. 2010, 82, 1123–1127.
  • 19. Kajiura, M.; Nakanishi, T.; Lida, H.; Takada, H.; Osaka, T. J. Colloid. Interf. Sci. 2009, 335, 140–145.
  • 20. Zhu, S.; Li, F.; Du, C.; Fu, Y. Nanomedicine 2008, 3, 669–677.
  • 21. Wan, M.; Luo, P.; Jin, J.; Xing, J.; Wang, Z.; Wong, S. T. C. Sensors 2010, 10, 6477–6487.
  • 22. Vazquez Mena, O.; Sannomiya, T.; Villanueva, L. G.; Voros, J.; Brugger, J. ACS Nano 2010, 5, 844–853.
  • 23. Lin, Y.; Zou, Y.; Mo, Y.; Guo, J.; Lindquist, R. G. Sensors 2010, 10, 9397–9406.
  • 24. Lin, Y.; Zou, Y.; Lindquist, R. G. Biomed. Opt. Express. 2011, 2, 478–484.
  • 25. Kaur, K.; Forrest, J. A. Langmuir 2011, 28, 2736–2744.
  • 26. Huang, T.; Nancy Xu, X. Nanoscale 2011, 3, 3567–3572.
  • 27. Xiang, G.; Zhang, N.; Zhou, X. Nanoscale Res. Lett. 2010, 5, 818–822.
  • 28. Chen, K. H.; Hobley, J.; Foo, Y. L.; Su, X. Lab Chip. 2011, 11, 1895–1901.
  • 29. Nath, N.; Chilkoti, A. Anal. Chem. 2001, 74, 504–509.
  • 30. Ahmed, M.; Byrne, J.; McLaughlin, J.; Ahmed, W. J. Biomater. Nanobiotechnol. 2013, 4, 194–203.
  • 31. Ithurbide, A.; Frateur, I.; Galtayries, A.; Marcus, P. Electrochimic. Acta 2007, 53, 1336–1345.
  • 32. Lai, L. J.; Yang, Y. W.; Lin, Y. K.; Huang, L. L.; Hsieh, Y. H. Colloid. Surface B 2009, 68, 130–135.
  • 33. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F. Handbook of X-Ray Photoelectron Spectroscopy; PerkinElmer Corporation: Eden Prairie, MN, USA, 1979.
  • 34. Cossaro, A.; Cvetko, D.; Floreano, L. Phys. Chem. Chem. Phys. 2012, 14, 13154–13162.
  • 35. Ochoa, N.; Bello, M.; Sancrist´obal, J.; Balsamo, V.; Albornoz, A.; Brito, J. L. Mat. Res. 2013, 16, 1209–1219.
  • 36. Tu, Q.; Pang, L.; Chen, Y.; Zhang, Y.; Zhang, R.; Lu, B.; Wang, J. Analyst. 2014, 139, 105-115.
  • 37. Hsu, S. H.; Lin, C. L.; Tseng, C. S. Biofabrication 2012, 4, 015002.
  • 38. Ahmed, M.; Byrne, J.; McLaughlin, J.; Ahmed, W. J. Biomater. Nanobiotechnol. 2013, 4, 194–203.
  • 39. Kim, H.; Bae, I. S.; Cho, S. J.; Boo, J. H.; Lee, B. C.; Heo, J.; Chung, I.; Hong, B. Nanoscale. Res. Lett. 2012, 7, 1–7.
  • 40. Ulgut, B.; Suzer, S. J. Phys. Chem. B. 2003, 107, 2939–2943.
  • 41. Urich, T.; Bandeiras, T. M.; Leal, S. S.; Rachel, R.; Albrecht, T.; Zimmermann, P.; Scholz, C.; Teixeira, M.; Gomes, C. M.; Kletzin, A. Biochem. J. 2004, 381, 137–146.
  • 42. Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 6961–6968.
  • 43. Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2003, 108, 109–116.
  • 44. Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2005, 109, 20522–20528.
  • 45. Marinakos, S. M.; Chen, S.; Chilkoti, A. Anal. Chem. 2007, 79, 5278–5283.
  • 46. Maeda, T.; Inoue, M.; Koshiba, S.; Yabuki, T.; Aoki, M.; Nunokawa, E.; Seki, E.; Matsuda, T.; Motoda, Y.; Kobayashi, A. J. Biol. Chem. 2004, 279, 13174–13182.
  • 47. Huang X.; El Sayed M. J. Advanced Res. 2010, 1, 18–23.
  • 48. Enustun, B. V.; Turkevich, J. J. Am. Chem. Soc. 1963, 85, 3317–3328.
  • 49. Howarter, J. A.; Youngblood, J. P. Langmuir 2006, 22, 11142–11147.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Simultaneous analysis of losartan, its active metabolite, and hydrochlorothiazide in human plasma by a UPLC-MS/MS method

Priyanka A. SHAH, Primal SHARMA, Jaivik V. SHAH, Mallika SANYAL, Pranav S. SHRIVASTAV

Synthesis of 5-aryl-$N$-(trichloroacetyl)-1,3,4-oxadiazole-2-carboxamide via three-component reaction of trichloroacetyl isocyanate, ($N$-isocyanimino)triphenylphosphorane, and benzoic acid derivatives

NAHID SHAJARI, ALI REZA KAZEMIZADEH, ALI RAMAZANI

Microwave-assisted regioselective [1,3]-dipolar cycloaddition of 3-methyl-2-(substitutedbenzylidene)-5-oxopyrazolidin-2-ium-1-ides to benzothiophene 1,1-dioxide

Yaşar DÜRÜST, Eda SAĞIRLI, Akin SAĞIRLI

Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection

İlknur TUNÇ, Hepi Hari SUSAPTO, Mustafa Özgür GÜLER

Synthesis and characterization of novel urea and thiourea substitute cyclotriphosphazene compounds as naked-eye sensors for F$^{-}$ and CN$^{-}$ anions

Hava ÖZAY, Mehmet YILDIRIM, Özgür ÖZAY

Purification, refolding, and characterization of recombinant human paraoxonase-1

Yeliz DEMİR, Şükrü BEYDEMİR

Microwave-assisted synthesis of novel 8-chloro-[1,2,4]triazolo[4,3-$a$]pyridine derivatives

LINJIONG ZHANG, MINGYAN YANG, Beizhen HU, ZHAOHUI SUN, XINGHAI LIU, JIANQUAN WENG, CHENGXIA TAN

Microwave-assisted synthesis of novel 8-chloro-[1,2,4]triazolo[4,3-a]pyridine derivatives

Ming-Yan YANG, Lin-Jiong ZHANG, Zhao-Hui SUN, Xing-Hai LIU, Jian-Quan WENG, Cheng-Xia TAN, Bei-Zhen HU

Synthesis of metal-free and metallophthalocyanines containing 18- and 21-membered macrocycles with mixed donor atoms and their metal-ion binding properties

Halil Zeki GÖK

Palladium nanoparticles supported on modified polystyrene resin as a polymeric catalyst for Sonogashira-Hagihara coupling reactions

BAHMAN TAMAMI, FATEMEH NOWROOZI DODEJI, SOHEILA GHASEMI