Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection

Here we describe the detailed characterization of gold nanoparticle (Au Np) functionalized surfaces as a biosensing platform by studying a model streptavidin (SA)-biotin interaction. Conjugation of SA on Au Np immobilized on silicon (Si) and quartz surfaces and its interaction with biotin were characterized by X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy, circular dichromism (CD) spectroscopy, and contact angle measurements. The immobilization method and atomic concentrations of Si 2p, Au 4f, S 2p, C 1s, N 1s, and O 1s of the resulting SA-biotin modified Si surface were determined by XPS. The CD spectrum and confocal microscopy imaging confirmed that step-by-step modification and bioconjugation can be monitored successfully. Such detailed and well-defined step-by-step characterization provides good information about the surface properties of biosensor platforms. In addition, the LSPR sensing ability of the Au Np based platforms was studied by using a model SA-biotin system. A 20 nm spectral red shift was detected when 150 nM SA was immobilized on to the Au Nps surface using the direct incubation/binding method on to the dry surface instead of the flow-injection method. The same platforms were also used to detect the CA 125 antibody-antigen system. Large spectral red shifts are very promising in terms of using these surfaces as LSPR biosensors.

Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection

Here we describe the detailed characterization of gold nanoparticle (Au Np) functionalized surfaces as a biosensing platform by studying a model streptavidin (SA)-biotin interaction. Conjugation of SA on Au Np immobilized on silicon (Si) and quartz surfaces and its interaction with biotin were characterized by X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy, circular dichromism (CD) spectroscopy, and contact angle measurements. The immobilization method and atomic concentrations of Si 2p, Au 4f, S 2p, C 1s, N 1s, and O 1s of the resulting SA-biotin modified Si surface were determined by XPS. The CD spectrum and confocal microscopy imaging confirmed that step-by-step modification and bioconjugation can be monitored successfully. Such detailed and well-defined step-by-step characterization provides good information about the surface properties of biosensor platforms. In addition, the LSPR sensing ability of the Au Np based platforms was studied by using a model SA-biotin system. A 20 nm spectral red shift was detected when 150 nM SA was immobilized on to the Au Nps surface using the direct incubation/binding method on to the dry surface instead of the flow-injection method. The same platforms were also used to detect the CA 125 antibody-antigen system. Large spectral red shifts are very promising in terms of using these surfaces as LSPR biosensors.

___

  • 1. Luppa, P. B.; Sokoll, L. J.; Chan, D. W. Clin. Chim. Acta 2001, 314, 1–26.
  • 2. Boujday, S.; Bantegnie, A.; Briand, E.; Marnet, P. G.; Salmain, M.; Pradier, C. M. J. Phys. Chem. B 2008, 112, 6708–6715.
  • 3. Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685–1706.
  • 4. Lalander, C. H.; Zheng, Y.; Dhuey, S.; Cabrini, S.; Bach, U. ACS Nano. 2010, 4, 6153–6161.
  • 5. Morel, A. L.; Boujday, S.; M´ethivier, C.; Krafft, J. M.; Pradier, C. M. Talanta 2011, 85, 35–42.
  • 6. Morel, A. L.; Volmant, R. M.; M´ethivier, C.; Krafft, J. M.; Boujday, S.; Pradier, C. M. Colloid. Surface B 2010, 81, 304–312.
  • 7. He, L.; Musick, M. D.; Nicewarner, S. R.; Salinas, F. G.; Benkovic, S. J.; Natan, M. J.; Keating, C. D. J. Am. Chem. Soc. 2000, 122, 9071–9077.
  • 8. Ma, Z.; Sui, S. F. Angew. Chem. Int. Edit. 2002, 41, 2176–2179.
  • 9. Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Langmuir 2008, 24, 5233–5237.
  • 10. Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267–297.
  • 11. Yonzon, C. R.; Stuart, D. A.; Zhang, X.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P. Talanta 2005, 67, 438–448.
  • 12. Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P. J. Am. Chem. Soc. 2005, 127, 2264–2271.
  • 13. Dahlin, A. B.; Tegenfeldt, J. O.; H¨o¨ok, F. Anal. Chem. 2006, 78, 4416–4423.
  • 14. Stuart, D. A.; Haes, A. J.; McFarland, A. D.; Nie, S.; Van Duyne, R. P. Proceedings of SPIE-The International Society for Optical Engineering 2004, 5327, 60–73.
  • 15. Yonzon, C. R.; Jeoung, E.; Zou, S.; Schatz, G. C.; Mrksich, M.; Van Duyne, R. P. J. Am. Chem. Soc. 2004, 126, 12669–12676.
  • 16. Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596–10604.
  • 17. Green, N. M. In Advances in Protein Chemistry; Anfinsen, C. B; Edsall, J. T.; Richards, F. M., Eds.; Academic Press: New York, NY, USA, 1975; Vol. 29, p 85–133.
  • 18. Chuang, Y.; Lee, C. Y.; Lu, S. H.; Wang, S. C.; Chau, L. K.; Hsieh, W. H. Anal. Chem. 2010, 82, 1123–1127.
  • 19. Kajiura, M.; Nakanishi, T.; Lida, H.; Takada, H.; Osaka, T. J. Colloid. Interf. Sci. 2009, 335, 140–145.
  • 20. Zhu, S.; Li, F.; Du, C.; Fu, Y. Nanomedicine 2008, 3, 669–677.
  • 21. Wan, M.; Luo, P.; Jin, J.; Xing, J.; Wang, Z.; Wong, S. T. C. Sensors 2010, 10, 6477–6487.
  • 22. Vazquez Mena, O.; Sannomiya, T.; Villanueva, L. G.; Voros, J.; Brugger, J. ACS Nano 2010, 5, 844–853.
  • 23. Lin, Y.; Zou, Y.; Mo, Y.; Guo, J.; Lindquist, R. G. Sensors 2010, 10, 9397–9406.
  • 24. Lin, Y.; Zou, Y.; Lindquist, R. G. Biomed. Opt. Express. 2011, 2, 478–484.
  • 25. Kaur, K.; Forrest, J. A. Langmuir 2011, 28, 2736–2744.
  • 26. Huang, T.; Nancy Xu, X. Nanoscale 2011, 3, 3567–3572.
  • 27. Xiang, G.; Zhang, N.; Zhou, X. Nanoscale Res. Lett. 2010, 5, 818–822.
  • 28. Chen, K. H.; Hobley, J.; Foo, Y. L.; Su, X. Lab Chip. 2011, 11, 1895–1901.
  • 29. Nath, N.; Chilkoti, A. Anal. Chem. 2001, 74, 504–509.
  • 30. Ahmed, M.; Byrne, J.; McLaughlin, J.; Ahmed, W. J. Biomater. Nanobiotechnol. 2013, 4, 194–203.
  • 31. Ithurbide, A.; Frateur, I.; Galtayries, A.; Marcus, P. Electrochimic. Acta 2007, 53, 1336–1345.
  • 32. Lai, L. J.; Yang, Y. W.; Lin, Y. K.; Huang, L. L.; Hsieh, Y. H. Colloid. Surface B 2009, 68, 130–135.
  • 33. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F. Handbook of X-Ray Photoelectron Spectroscopy; PerkinElmer Corporation: Eden Prairie, MN, USA, 1979.
  • 34. Cossaro, A.; Cvetko, D.; Floreano, L. Phys. Chem. Chem. Phys. 2012, 14, 13154–13162.
  • 35. Ochoa, N.; Bello, M.; Sancrist´obal, J.; Balsamo, V.; Albornoz, A.; Brito, J. L. Mat. Res. 2013, 16, 1209–1219.
  • 36. Tu, Q.; Pang, L.; Chen, Y.; Zhang, Y.; Zhang, R.; Lu, B.; Wang, J. Analyst. 2014, 139, 105-115.
  • 37. Hsu, S. H.; Lin, C. L.; Tseng, C. S. Biofabrication 2012, 4, 015002.
  • 38. Ahmed, M.; Byrne, J.; McLaughlin, J.; Ahmed, W. J. Biomater. Nanobiotechnol. 2013, 4, 194–203.
  • 39. Kim, H.; Bae, I. S.; Cho, S. J.; Boo, J. H.; Lee, B. C.; Heo, J.; Chung, I.; Hong, B. Nanoscale. Res. Lett. 2012, 7, 1–7.
  • 40. Ulgut, B.; Suzer, S. J. Phys. Chem. B. 2003, 107, 2939–2943.
  • 41. Urich, T.; Bandeiras, T. M.; Leal, S. S.; Rachel, R.; Albrecht, T.; Zimmermann, P.; Scholz, C.; Teixeira, M.; Gomes, C. M.; Kletzin, A. Biochem. J. 2004, 381, 137–146.
  • 42. Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 6961–6968.
  • 43. Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2003, 108, 109–116.
  • 44. Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2005, 109, 20522–20528.
  • 45. Marinakos, S. M.; Chen, S.; Chilkoti, A. Anal. Chem. 2007, 79, 5278–5283.
  • 46. Maeda, T.; Inoue, M.; Koshiba, S.; Yabuki, T.; Aoki, M.; Nunokawa, E.; Seki, E.; Matsuda, T.; Motoda, Y.; Kobayashi, A. J. Biol. Chem. 2004, 279, 13174–13182.
  • 47. Huang X.; El Sayed M. J. Advanced Res. 2010, 1, 18–23.
  • 48. Enustun, B. V.; Turkevich, J. J. Am. Chem. Soc. 1963, 85, 3317–3328.
  • 49. Howarter, J. A.; Youngblood, J. P. Langmuir 2006, 22, 11142–11147.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Purification, refolding, and characterization of recombinant human paraoxonase-1

Yeliz DEMİR, Şükrü BEYDEMİR

Microwave-assisted synthesis of novel 8-chloro-[1,2,4]triazolo[4,3-a]pyridine derivatives

Ming-Yan YANG, Lin-Jiong ZHANG, Zhao-Hui SUN, Xing-Hai LIU, Jian-Quan WENG, Cheng-Xia TAN, Bei-Zhen HU

Synthesis and characterization of novel urea and thiourea substitute cyclotriphosphazene compounds as naked-eye sensors for F$^{-}$ and CN$^{-}$ anions

Hava ÖZAY, Mehmet YILDIRIM, Özgür ÖZAY

Enhanced electrocatalytic efficiency of C/MWNTs for methanol oxidation using Ni deposited on MWNTs

Murat FARSAK, Gülfeza KARDAŞ

A case study on in vitro investigations of the potent biological activities of wheat germ and black cumin seed oil

Didem Ağ ŞELECİ, Zinar Pinar GÜMÜŞ, Murat YAVUZ, Muharrem ŞELECİ, Rebecca BONGARTZ, Frank STAHL, Hakan COŞKUNOL, Suna TİMUR, Thomas SCHEPER

Three-component synthesis of cyclic β -aminoesters using CeO2 nanoparticles as an efficient and reusable catalyst

Javad GHOMI SAFAEI, Sima KALHOR, Hossein ALAVI SHAHBAZI, Mehrnoosh KHEIRABADI ASGARI

A water-soluble perylene derivative for live-cell imaging

Yongshan MA, Fengxia ZHANG, Jinfeng ZHANG, Tianyi JIANG

Synthesis of metal-free and metallophthalocyanines containing 18- and 21-membered macrocycles with mixed donor atoms and their metal-ion binding properties

Halil Zeki GÖK

Optimization of the adsorption of a textile dye onto nanoclay using a central composite design

Aydin HASSANI, Murat KIRANŞAN, Reza Darvishi Cheshmeh SOLTANI, Alireza KHATAEE, Semra KARACA

Microwave-assisted synthesis of condensed 1,4-dihydropyridines as potential calcium channel modulators

ERDEM KAMİL ÖZER, MİYASE GÖZDE GÜNDÜZ, AHMED EL-KHOULY, MEHMET YILDIRIM SARA, RAHİME ŞİMŞEK, ALPER BEKTAŞ İSKİT, OSMAN CİHAT ŞAFAK