Development of a functional impedimetric immunosensor for accurate detection of thyroid-stimulating hormone

Development of a functional impedimetric immunosensor for accurate detection of thyroid-stimulating hormone

Thyroid-stimulating hormone (TSH), which regulates the synthesis of thyroid gland hormones affecting the whole metabolism, is a pituitary hormone. Determination of TSH is crucial for monitoring thyroid gland-related disorders and some metabolic diseases. In this study, a nonlabeled immunosensor based on covalent immobilization of anti-TSH antibody by using the formation of self-assembled monolayers (SAM) of 4-mercaptophenylacetic acid (4-MPA) and functionalization of carboxyl ends with 1-ethyl-3-(3-dimetilaminopropil) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) was fabricated for detection of TSH. Immobilization steps including the concentration of 4-MPA, the concentration of anti-TSH antibody, and duration of anti-TSH antibody incubation were optimized by utilizing electrochemical impedance spectroscopy. Under optimal conditions, a sensitive, rapid, and accurate determination of TSH at a concentration range between 0.7 and 3.5 mIU/L was accomplished with a notable linearity and LOD value of 0.034 mIU/L, as well as reproducibility and repeatability. Moreover, for comparison, linear range experiments were also carried out by using other electrochemical methods, including linear sweep voltammetry, cyclic voltammetry, and capacitance spectroscopy. Finally, the constructed immunosensor was used for analyzing TSH levels spiked in the artificial serum samples.

___

  • 1. Mascini M, Tombelli S. Biosensors for biomarkers in medical diagnostics. Biomarkers 2008; 13 (7-8): 637-657. doi: 10.1080/13547500802645905
  • 2. Yücel A, Özcan HM, Sağıroğlu A. A new multienzyme-type biosensor for triglyceride determination. Preparative Biochemistry and Biotechnology 2016; 46 (1): 78-84. doi: 10.1080/10826068.2014.985833
  • 3. Inal Kabala S, Yagar H, Ozcan HM. A new biosensor for osteoporosis detection. Preparative Biochemistry and Biotechnology 2019; 49 (5): 511-520. doi: 10.1080/10826068.2019.1587628
  • 4. Canavar PE, Ekşin E, Erdem A. Electrochemical monitoring of the interaction between mitomycin C and DNA at chitosan-carbon nanotube composite modified electrodes. Turkish Journal of Chemistry 2015; 39 (1): 1-12. doi: 10.3906/kim-1402-11
  • 5. Saberian M, Asgari D, Omidi Y, Barar J, Hamzeiy H. Establishment of an electrochemical RNA aptamer-based biosensor to trace nanomolar concentrations of codeine. Turkish Journal of Chemistry 2013; 37 (3): 366-373. doi: 10.3906/kim-1209-45
  • 6. Ozcan HM, Sagiroglu A. A novel amperometric biosensor based on banana peel (Musa cavendish) tissue homogenate for determination of phenolic compounds. Artificial Cells, Blood Substitutes, and Biotechnology 2010; 38 (4): 208-214. doi: 10.3109/10731191003776744
  • 7. Roointan A, Shabab N, Karimi J, Rahmani A, Alikhani MY et al. Designing a bacterial biosensor for detection of mercury in water solutions. Turkish Journal of Biology 2015; 39 (4): 550-555. doi: 10.3906/biy-1411-49
  • 8. Uludağ Y, Ölçer Z, Doğan C, Muhammad T, Altintaş Z. Rapid and on-site electrochemical detection of bisphenol A and arsenic in drinking water using a novel electrode array. Turkish Journal of Chemistry 2019; 43 (2): 612-623. doi: 10.3906/kim-1805-3
  • 9. Karaboǧa MNS, Sezgintürk MK. Cerebrospinal fluid levels of alpha-synuclein measured using a poly-glutamic acid-modified gold nanoparticle-doped disposable neuro-biosensor system. Analyst 2019; 144 (2): 611-621. doi: 10.1039/c8an01279b
  • 10. Rana L, Gupta R, Tomar M, Gupta V. Highly sensitive Love wave acoustic biosensor for uric acid. Sensors and Actuators, B: Chemical 2018; 261: 169-177. doi: 10.1016/j.snb.2018.01.122
  • 11. Lai C-Y, Foot P, Brown J, Spearman P. A urea potentiometric biosensor based on a thiophene copolymer. Biosensors 2017; 7 (4): 13. doi: 10.3390/bios7010013
  • 12. Yu J, Ge L, Dai P, Zhan C, Ge S et al. A novel glucose chemiluminescence biosensor based on a rhodanine derivative chemiluminescence system and multilayer-enzyme membrane. Turkish Journal of Chemistry 2010; 34 (4): 489-498. doi: 10.3906/kim-0911-29
  • 13. Pires ACDS, Soares NDFF, da Silva LHM, da Silva MCH, Mauro, Almeida V et al. A colorimetric biosensor for the detection of foodborne bacteria. Sensors and Actuators, B: Chemical 2011; 153 (1): 17-23. doi: 10.1016/j.snb.2010.09.069
  • 14. Duffy GF, Moore EJ. Electrochemical immunosensors for food analysis: a review of recent developments. Analytical Letters 2017; 50 (1): 1-32.
  • 15. Wang Y, Ye Z, Ying Y. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors 2012; 12 (3): 3449-3471. doi: 10.3390/s120303449
  • 16. Bahadır EB, Sezgintürk MK. A review on impedimetric biosensors. Artificial Cells, Nanomedicine, and Biotechnology 2016; 44 (1): 248- 262. doi: 10.3109/21691401.2014.942456
  • 17. Radhakrishnan R, Suni II, Bever CS, Hammock BD. Impedance biosensors: applications to sustainability and remaining technical challenges. ACS Sustainable Chemistry and Engineering 2014; 2 (7): 1649-1655.
  • 18. Makaraviciute A, Ramanaviciene A. Site-directed antibody immobilization techniques for immunosensors. Biosensors and Bioelectronics 2013; 50: 460-471.
  • 19. Özcan HM, Sezgintürk MK. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers. Biotechnology Progress 2015; 31 (3): 815-822. doi: 10.1002/btpr.2060
  • 20. Yukird J, Wongtangprasert T, Rangkupan R, Chailapakul O, Pisitkun T et al. Label-free immunosensor based on graphene/polyaniline nanocomposite for neutrophil gelatinase-associated lipocalin detection. Biosensors and Bioelectronics 2017; 87: 249-255. doi: 10.1016/j. bios.2016.08.062
  • 21. Acero Sánchez JL, Fragoso A, Joda H, Suárez G, McNeil CJ et al. Site-directed introduction of disulfide groups on antibodies for highly sensitive immunosensors. Analytical and Bioanalytical Chemistry 2016; 408 (19): 5337-5346. doi: 10.1007/s00216-016-9630-9
  • 22. Uludağ İ, Sezgi̇ntürk MK. An ultrasensitive electrochemical immunosensor platform based on disposable ITO electrode modified by 3-CPTMS for early detection of parathyroid hormone. Turkish Journal of Chemistry 2019; 43 (6): 1697-1710. doi: 10.3906/kim-1909-44
  • 23. Viter R, Savchuk M, Iatsunskyi I, Pietralik Z, Starodub N et al. Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosensors and Bioelectronics 2018; 99: 237-243. doi: 10.1016/j.bios.2017.07.056
  • 24. Wan Y, Su Y, Zhu X, Liu G, Fan C. Development of electrochemical immunosensors towards point of care diagnostics. Biosensors and Bioelectronics 2013; 47: 1-11.
  • 25. Felix FS, Angnes L. Electrochemical immunosensors – A powerful tool for analytical applications. Biosensors and Bioelectronics 2018; 102: 470-478.
  • 26. Tunç I, Susapto HH, Güler MÖ. Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection. Turkish Journal of Chemistry 2015; 39 (4): 697-713. doi: 10.3906/kim-1412-42
  • 27. Qi X, Chen T, Lu D, Chen B. Graphene-Au nanoparticle based electrochemical immunosensor for fish pathogen Aphanomyces invadans detection. Fullerenes, Nanotubes and Carbon Nanostructures 2017; 25 (1): 12-16. doi: 10.1080/1536383X.2016.1239080
  • 28. Tuteja SK, Chen R, Kukkar M, Song CK, Mutrejac R et al. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosensors and Bioelectronics 2016; 86: 548-556. doi: 10.1016/j.bios.2016.07.052
  • 29. Eissa S, Almthen RA, Zourob M. Disposable electrochemical immunosensor array for the multiplexed detection of the drug metabolites morphine, tetrahydrocannabinol and benzoylecgonine. Microchimica Acta 2019; 186 (8): 1-9. doi: 10.1007/s00604-019-3646-8
  • 30. Pérez-Fernández B, Mercader JV, Abad-Fuentes A, Checa-Orrego BI, Costa-García A et al. Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta 2020; 209: 120465. doi: 10.1016/j.talanta.2019.120465
  • 31. Ghosh H, Das R, Roychaudhuri C. Optimized nanocrystalline silicon oxide impedance immunosensor electronic tongue for subfemtomolar estimation of multiple food toxins. IEEE Transactions on Instrumentation and Measurement 2017; 66 (5): 964-973. doi: 10.1109/TIM.2016.2625978
  • 32. Özcan HM, Yildiz K, Çakar C, Aydin T, Asav E et al. Ultrasensitive impedimetric biosensor fabricated by a new immobilisation technique for parathyroid hormone. Applied Biochemistry and Biotechnology 2015; 176 (5): 1251-1262. doi: 10.1007/s12010-015-1643-x
  • 33. Smaniotto A, Mezalira DZ, Zapp E, Gallardo H, Vieira IC. Electrochemical immunosensor based on an azo compound for thyroidstimulating hormone detection. Microchemical Journal 2017; 133: 510-517. doi: 10.1016/j.microc.2017.04.010
  • 34. Yang B, Liu D, Zhu L, Liu Y, Wang X et al. Sensitive detection of thyroid stimulating hormone by inkjet printed microchip with a double signal amplification strategy. Chinese Chemical Letters 2018; 29 (12): 1879-1882. doi: 10.1016/j.cclet.2018.01.042
  • 35. Beitollahi H, Ivari SG, Torkzadeh-Mahani M. Application of antibody–nanogold–ionic liquid–carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Biosensors and Bioelectronics 2018; 110: 97-102. doi: 10.1016/j. bios.2018.03.003
  • 36. Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structurefunction relationships. Physiological Reviews 2002; 82 (2): 473-502.
  • 37. Hergenç G, Onat A, Albayrak S, Karabulut A, Türkmen S et al. TSH levels in turkish adults: prevalences and associations with serum lipids, coronary heart disease and metabolic syndrome. Turkish Journal of Medical Sciences 2005; 35: 297-304.
  • 38. van Deventer HE, Soldin SJ. The expanding role of tandem mass spectrometry in optimizing diagnosis and treatment of thyroid disease. Advances in Clinical Chemistry 2013; 61: 127-52. doi: 10.1016/b978-0-12-407680-8.00005-1
  • 39. Kunisue T, Fisher JW, Kannan K. Determination of six thyroid hormones in the brain and thyroid gland using isotope-dilution liquid chromatography/tandem mass spectrometry. Analytical Chemistry 2011; 83 (1): 417-424. doi: 10.1021/ac1026995
  • 40. Mello C, Marangoni A, Poppi R, Noda I. Fast determination of thyroid stimulating hormone in human blood serum without chemical preprocessing by using infrared spectroscopy and least squares support vector machines. Analytica Chimica Acta 2011; 696 (1-2): 47-52. doi: 10.1016/j.aca.2011.04.015
  • 41. Christofides ND, Midgley JEM. Inaccuracies in free thyroid hormone measurement by ultrafiltration and tandem mass spectrometry. Clinical Chemistry 2009; 55 (12): 2228-2229. doi: 10.1373/clinchem.2009.134593
  • 42. Lin Z, Wang X, Li ZJ, Ren SQ, Chen GN et al. Development of a sensitive, rapid, biotin-streptavidin based chemiluminescent enzyme immunoassay for human thyroid-stimulating hormone. Talanta 2008; 75 (4): 965-972. doi: 10.1016/j.talanta.2007.12.043
  • 43. Wang D, Skinner JP, Ruan Q, Tetin SY, Collier GB. Affinity assisted selection of antibodies for Point of Care TSH immunoassay with limited wash. Clinica Chimica Acta 2015; 438: 55-61. doi: 10.1016/j.cca.2014.07.027
  • 44. Rajesh, Kumar K, Mishra SK, Dwivedi P, Sumana G. Recent progress in the sensing techniques for the detection of human thyroid stimulating hormone. TrAC - Trends in Analytical Chemistry 2019; 118: 666-676.
  • 45. Choi S, Hwang J, Lee S, Lim DW, Joo H et al. Quantitative analysis of thyroid-stimulating hormone (TSH) using SERS-based lateral flow immunoassay. Sensors and Actuators, B: Chemical 2017; 240: 358-364. doi: 10.1016/j.snb.2016.08.178
  • 46. Ricci F, Adornetto G, Palleschi G. A review of experimental aspects of electrochemical immunosensors. Electrochimica Acta 2012; 84: 74-83. doi: 10.1016/j.electacta.2012.06.033
  • 47. Mollarasouli F, Kurbanoglu S, Ozkan SA. The role of electrochemical immunosensors in clinical analysis. Biosensors 2019; 9 (3): 86. doi: 10.3390/bios9030086
  • 48. Lin ZH, Shen GL, Miao Q, Yu RQ. A thyroid-stimulating hormone immuno-electrode. Analytica Chimica Acta 1996; 325 (1-2): 87-92. doi: 10.1016/0003-2670(96)00012-8
  • 49. Ozcan HM, Aydin UD. A simple immunosensor for thyroid stimulating hormone. Artificial Cells, Nanomedicine, and Biotechnology 2021; 49 (1): 61-70. doi: 10.1080/21691401.2020.1867153
  • 50. Wani TA, Zargar S, Wakil SM, Darwish IA. New analytical application of antibody-based biosensor in estimation of thyroid-stimulating hormone in serum. Bioanalysis 2016; 8 (7): 625-632. doi: 10.4155/bio-2015-0034
  • 51. Yağar H, Özcan HM, Mehmet O. A new electrochemical impedance biosensor based on aromatic thiol for alpha-1 antitrypsin determination. Turkish Journal of Chemistry 2021; 45 (1): 104-118. doi: 10.3906/kim-2007-6
  • 52. Shervedani RK, Mehrjardi AH, Zamiri N. A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 2006; 69 (2): 201-208. doi: 10.1016/j.bioelechem.2006.01.003
  • 53. Cui F, Xu Y, Wang R, L Haitao, Chen L et al. Label-free impedimetric glycan biosensor for quantitative evaluation interactions between pathogenic bacteria and mannose. Biosensors and Bioelectronics 2018; 103: 94-98. doi: 10.1016/j.bios.2017.11.068
  • 54. Chen H, Heng CK, Puiu PD, Zhou XD, Lee AC et al. Detection of Saccharomyces cerevisiae immobilized on self-assembled monolayer (SAM) of alkanethiolate using electrochemical impedance spectroscopy. Analytica Chimica Acta 2005; 554 (1-2): 52-59. doi: 10.1016/j. aca.2005.08.086
  • 55. Sezgintürk MK. A new impedimetric biosensor utilizing VEGF receptor-1 (Flt-1): Early diagnosis of vascular endothelial growth factor in breast cancer. Biosensors and Bioelectronics 2011; 26 (10): 4032-4039. doi: 10.1016/j.bios.2011.03.025
  • 56. Su W, Lin M, Lee H, Cho MS, Choe WS et al. Determination of endotoxin through an aptamer-based impedance biosensor. Biosensors and Bioelectronics 2012; 32 (1): 32-36. doi: 10.1016/j.bios.2011.11.009
  • 57. Asav E, Sezgintürk MK. A novel impedimetric disposable immunosensor for rapid detection of a potential cancer biomarker. International Journal of Biological Macromolecules 2014; 66: 273-280. doi: 10.1016/j.ijbiomac.2014.02.032
  • 58. Feng L, Chen Y, Ren J, Qu X. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 2011; 32 (11): 2930-2937. doi: 10.1016/j.biomaterials.2011.01.002
  • 59. Bhardwaj H, Sumana G, Marquette CA. A label-free ultrasensitive microfluidic surface Plasmon resonance biosensor for Aflatoxin B1 detection using nanoparticles integrated gold chip. Food Chemistry 2020; 307: 125530. doi: 10.1016/j.foodchem.2019.125530
  • 60. Canbaz MÇ, Sezgintürk MK. Fabrication of a highly sensitive disposable immunosensor based on indium tin oxide substrates for cancer biomarker detection. Analytical Biochemistry 2014; 446 (1): 9-18. doi: 10.1016/j.ab.2013.10.014
  • 61. Bahadir EB, Sezgintürk MK. Label-free, ITO-based immunosensor for the detection of a cancer biomarker: Receptor for Activated C Kinase 1. Analyst 2016; 141 (19): 5618-5626. doi: 10.1039/c6an00694a
  • 62. Sayikli Şimşek Ç, Sonuç Karaboğa MN, Sezgintürk MK. A new immobilization procedure for development of an electrochemical immunosensor for parathyroid hormone detection based on gold electrodes modified with 6-mercaptohexanol and silane. Talanta 2015; 144: 210-218. doi: 10.1016/j.talanta.2015.06.010
  • 63. Sonuç MN, Sezgintürk MK. Ultrasensitive electrochemical detection of cancer associated biomarker HER3 based on anti-HER3 biosensor. Talanta 2014; 120: 355-361. doi: 10.1016/j.talanta.2013.11.090
  • 64. Bahadır EB, Sezgintürk MK. A comparative study of short chain and long chain mercapto acids used in biosensor fabrication: A VEGF-R1-based immunosensor as a model system. Artificial Cells, Nanomedicine, and Biotechnology 2016; 44 (2): 462-470. doi: 10.3109/21691401.2014.962743.
  • 65. Limbut W, Kanatharana P, Mattiasson B, Asawatreratanakul P, Thavarungkul P. A reusable capacitive immunosensor for carcinoembryonic antigen (CEA) detection using thiourea modified gold electrode. Analytica Chimica Acta 2006; 561 (1-2): 55-61. doi: 10.1016/j.aca.2006.01.021
  • 66. Asav E, Sağıroğlu A, Sezgintürk MK. Quantitative analysis of a promising cancer biomarker, calretinin, by a biosensing system based on simple and effective immobilization process. Electroanalysis 2016; 28 (2): 334-342. doi: 10.1002/elan.201500324
  • 67. Marques RCB, Viswanathan S, Nouws HPA, Delerue-Matos C, González-García MB. Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta 2014; 129: 594-599. doi: 10.1016/j.talanta.2014.06.035
  • 68. Prabhulkar S, Alwarappan S, Liu G, Li CZ. Amperometric micro-immunosensor for the detection of tumor biomarker. Biosensors and Bioelectronics 2009; 24 (12): 3524-3530. doi: 10.1016/j.bios.2009.05.002
  • 69. Tan Y, Chu X, Shen GL, Yu RQ. A signal-amplified electrochemical immunosensor for aflatoxin B1 determination in rice. Analytical Biochemistry 2009; 387 (1): 82-86. doi: 10.1016/j.ab.2008.12.030
  • 70. Dhull N, Kaur G, Gupta V, Tomar M. Highly sensitive and non-invasive electrochemical immunosensor for salivary cortisol detection. Sensors and Actuators, B: Chemical 2019; 293: 281-288. doi: 10.1016/j.snb.2019.05.020
  • 71. Fu Y, Yuan R, Tang D, Chai Y, Xu L. Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloids and Surfaces B: Biointerfaces 2005; 40 (1): 61- 66. doi: 10.1016/j.colsurfb.2004.10.022
  • 72. Salahvarzi A, Mahani M, Torkzadeh-Mahani M, Alizadeh R. Localized surface plasmon resonance based gold nanobiosensor: Determination of thyroid stimulating hormone. Analytical Biochemistry 2017; 516: 1-5. doi: 10.1016/j.ab.2016.10.003
  • 73. Tieu M Van, Go A, Park YJ, Nguyen HV, Hwang SY, Lee MH. Highly sensitive ELISA using membrane-based microwave-mediated electrochemical immunoassay for thyroid-stimulating hormone detection. IEEE Sensors Journal 2019; 19 (21): 9826-9831. doi: 10.1109/ JSEN.2019.2925020
  • 74. Jung W, Han J, Kai J, Lim JY, Sul D, Ahn CH. An innovative sample-to-answer polymer lab-on-a-chip with on-chip reservoirs for the POCT of thyroid stimulating hormone (TSH). Lab on a Chip 2013; 13 (23): 4653-4662. doi: 10.1039/c3lc50403d
  • 75. Liu Y, Zhang Q, Wang H, Yuan Y, Chai Y et al. An electrochemiluminescence immunosensor for thyroid stimulating hormone based on polyamidoamine-norfloxacin functionalized Pd-Au core-shell hexoctahedrons as signal enhancers. Biosensors and Bioelectronics 2015; 71: 164-170. doi: 10.1016/j.bios.2015.04.022
  • 76. Sonuç Karaboğa MN, Şimşek ÇS, Sezgintürk MK. AuNPs modified, disposable, ITO based biosensor: Early diagnosis of heat shock protein 70. Biosensors and Bioelectronics 2016; 84: 22-29. doi: 10.1016/j.bios.2015.08.044
  • 77. Canbaz MÇ, Şimşek ÇS, Sezgintürk MK. Electrochemical biosensor based on self-assembled monolayers modified with gold nanoparticles for detection of HER-3. Analytica Chimica Acta 2014; 814: 31-38. doi: 10.1016/j.aca.2014.01.041
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis, spectroscopic, thermal, crystal structure properties and characterization of new Hofmann-type-like clathrates with 4-aminopyridine and water

Zeki KARTAL, Onur ŞAHİN

UV-Visible spectroscopic study on multi-staged film formation mechanisms of graphene oxide-doped polystyrene latex (PS latex/GO) nanocomposites

Barış DEMİRBAY, Şaziye UĞUR, Asef ETEMADI

The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L.

Elvisa HODŽIĆ, Milica BALABAN, Biljana KUKAVICA, Dijana MIHAJLOVIĆ, Sebila REKANOVIĆ, Halid MAKIĆ, Semira GALIJAŠEVIĆ

Electrochemical investigation of the interaction of 2,4-D and double stranded DNA using pencil graphite electrodes

Gülşah ÇONGUR

Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles

Asiye Aslıhan AVAN

The synthesis and characterization of polyorganosiloxane nanoparticles from 3-mercaptopropyltrimethoxysilane for preparation of nanocomposite films via photoinitiated thiol-ene polymerization

Nurcan KARACA

Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors

Hiroshi SAKAGAMİ, İlhami GÜLÇİN, Rüya KAYA, Halise İnci GÜL, Mehtap TUĞRAK

Graphene preparation and graphite exfoliation

Ahmed A. MOOSA, Mayyadah S. ABED

Novel Mannich bases with strong carbonic anhydrases and acetylcholinesterase inhibition effects: 3-(aminomethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}-2(3H)- benzoxazolones

Yeliz DEMİR, İlhami GÜLÇİN, Barış ANIL, Mehmet KOCA, Sinan BiLGiNER

Synthesis, characterization and catalytic properties of cationic N-heterocyclic carbene silver complexes

Deniz DEMİR ATLI