Determination of morin on an electrochemically activated carbon-paste electrode

Determination of morin on an electrochemically activated carbon-paste electrode

In this paper, the possibility of using an electrochemically activated carbon-paste electrode (ECA-CPE)for the determination of morin has been studied. It is established that the oxidation current increases 1.85 times incomparison with untreated CPE. The adsorption nature of the anodic current and the number of electrons taking partin the oxidation of morin on ECA-CPE was established. The optimal conditions for the determination of morin (pH =4, Eads = 200 mV, tads = 180 s) were established. Using square-wave voltammetry (A = 35 mV, ν = 25 Hz, υ = 100mV/s) it is possible to determine morin in the range of concentrations of 6–0.8 µM (with 0.314 µA/µM sensitivity) and0.8–0.16 µM (with 0.557 µA/µM sensitivity). The developed sensor was tested for the determination of morin in modelsolutions and Coffea arabica extracts with RSD lower than 4.5%.

___

  • 1. Venu, J. G. Pharmacogn. J. 2013, 5, 123-126.
  • 2. Zhou, Y.; Cao, Z. Q.; Wang, H. Y.; Cheng, Y. N.; Yu, L. G.; Zhang, X. K.; Sun, Y.; Guo, X. L. Mol. Nutr. Food Res. 2017, 61, 1-10.
  • 3. Wang, J.; Zhou, X.; Liu, S.; Li, G.; Shi, L.; Dong, J.; Li, W.; Deng, X.; Niu, X. J. Appl. Microbiol. 2015, 118, 753-763.
  • 4. Zhang, Q.; Zhang, F.; Thakur, K.; Wang, J.; Wang, H.; Hu, F.; Zhang, J. G.; Wei, Z. J. Food Chem. Toxicol. 2018, 112, 466-475.
  • 5. Pavun, L.; Djikanovic, D.; Djurdjevic, P.; Stankov, M. J.; Malesev, D.; Ciric, A. Acta Chim. Slov. 2009, 56, 967-972.
  • 6. Kongkiatpaiboon, S.; Tungsukruthai, P.; Sriyakool, K.; Pansuksan, K.; Tunsirikongkon, A.; Pandith, H. J. Chromatogr. Sci., 2016, 55, 346-350.
  • 7. Kumar, M. R.; Muralidharan, S. J. Young Pharm. 2015, 7, 194-199.
  • 8. Bark, K.; Im, S.; Seo, J.; Park, O.; Park, C.; Park, H. Bull. Korean Chem. Soc. 2015, 36, 498-502.
  • 9. Ziyatdinova, G.; Ziganshina, E.; Budnikov, H. Electrochim. Acta 2014, 145, 209-216.
  • 10. Cheng, W.; Liu, P.; Zhang, M.; Huang, J.; Cheng, F.; Wang, L. RSC Adv. 2017, 7, 47781-47788.
  • 11. Mariño, A.; Leiva, Y.; Bolaños, K.; García-Beltrán, O.; Nagles, E. J. Electroanal. Chem. 2015, 759, 153-157.
  • 12. Wang, F.; Xu, Y.; Zhao, J.; Hu, S. Bioelectrochemistry 2007, 70, 356-362.
  • 13. Sasikumar, R.; Govindasamy, M.; Chen, S. M.; Chieh-Liu, Y.; Ranganathan, P.; Rwei, S. P. J. Colloid Interface Sci. 2017, 504, 626-632.
  • 14. Xiao, P.; Zhou, Q.; Xiao, F.; Zhao, F.; Zeng, B. Int. J. Electrochem. Sci. 2006, 1, 228-237.
  • 15. Temerk, Y. M.; Ibrahim, M. S.; Kotb, M.; Schuhmann, W. Electroanalysis 2013, 25, 1381-1387.
  • 16. Varghese, A.; Chitravathi, S.; Munichandraiah, N. J. Electrochem. Soc. 2016, 163, B471-B477.
  • 17. Rice, M. E.; Galus, Z.; Adams, R. N. J. Electroanal. Chem. Interfacial Electrochem. 1983, 143, 89-102.
  • 18. Chebotarev, A.; Pliuta, K.; Koicheva, A.; Bevziuk, K.; Snigur, D. Anal. Lett. 2018, 51, 1520-1528.
  • 19. Pliuta, K.; Chebotarev, A.; Koicheva, A.; Bevziuk, K.; Snigur, D. Anal. Methods-UK 2018, 10, 1472-1479.
  • 20. Wopschall, R. H.; Shain, I. Anal. Chem. 1967, 39, 1535-1542.
  • 21. Chebotarev, A. N.; Snigur, D. V. Russ. J. Gen. Chem. 2016, 86, 815-820.
  • 22. Laviron, E. J. Electroanal. Chem. 1979, 101, 19-28.
  • 23. Laviron, E. J. Electroanal. Chem. 1974, 52, 355-393.
  • 24. Masek, A.; Chrzescijanska, E.; Zaborski, M. Food Chem. 2014, 148, 18-23.
  • 25. Janeiro, P.; Brett, A. M. O. Electroanalysis 2005, 17, 733-738.
  • 26. Calderón, J. A.; Cardozo-Pérez, M.; Torres-Benítez, A.; García-Beltrán, O.; Nagles, E. Anal. Methods-UK 2017, 9, 6474-6481.