Neutral atoms and ion energies, accurate ionization potential, and electron affinities by polynomial generator coordinate Hartree–Fock method

Neutral atoms and ion energies, accurate ionization potential, and electron affinities by polynomial generator coordinate Hartree–Fock method

We have developed accurate Gaussian basis functions obtained with the polynomial generator coordinateHartree–Fock (p-GCHF) method for H, Zn, and Ga-Kr atoms. These basis sets have been applied in the calculation ofnonrelativistic energies for neutral atoms, monovalent cations, monovalent anions, ionization potential (IP), and electronaffinity (EA), with the objective of proving the quality of the basis set generated by the p-GCHF method. The totalenergies calculated for neutral atoms and monovalent cations and respective IP were minimally affected by the additionof polarization functions and their precision was comparable to the values reported in the literature. The relative errorswere lower than 6.0 × 10 −5 % and 7.0 × 10 −5 % for neutral atoms and monovalent cations, respectively. The IP resultswere strictly equal to numerical Hartree–Fock (NHF) calculations and comparable to some experimental values. Formonovalent anions, the nonrelativistic total energies were better than the Slater-type functions results and the relativeerrors were lower than 0.05% when compared to NHF. The EA results were the same as those obtained with NHFcalculations reported in the literature for heavier elements. For IP and EA, our results followed the same periodictendency when compared with experimental data.

___

  • 1. Varandas, A, J. C. Annu. Rev. Phys. Chem. 2018, 69, 177-203.
  • 2. Roothaan, C. C. J. ffRev. Mod. Phys. 1951, 23, 69-89.
  • 3. Silver, D. M.; Wilson, S.; Nieuwpoort, W. C. Int. J. Quantum Chem. 1978, 14, 635-639.
  • 4. Silver, D. M.; Nieuwpoort, W. C. Lett. Phys. Chem. 1978, 57, 421-422.
  • 5. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007-1023.
  • 6. Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358-1371.
  • 7. Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1994, 100, 2975-2988.
  • 8. Wilson, A. K.; Woon, D. E.; Peterson, K. A.; Dunning, T. H. Jr. J. Chem. Phys. 2001, 114, 9244-9253.
  • 9. Koput, J.; Peterson, K. A. J. Phys. Chem. A 2002, 106, 9595-9599.
  • 10. Balabanov, N. B.; Peterson, K. A. J. Chem. Phys. 2005, 123, 1-15.
  • 11. Mohallem, J. R.; Dreizler, R. M.; Trsic, M. Int. J. Quantum Chem. 1986, 20, 45-55.
  • 12. Barbosa, R. C.; da Silva, A. B. F. Mol. Phys. 2003, 101, 1073-1077.
  • 13. Sahin, E.; Ozdogan, T.; Orbay, M. J. Math. Chem. 2017, 55, 1849-1856.
  • 14. Schütt, O.; VandeVondele J. J. Chem. Theory Comput. 2018, 14, 4168-4175
  • 15. Celeste, R.; Maringolo, M. P.; Comar, M. Jr.; Viana, R. B.; Guimarães, A. R.; Haiduke, R. L. A.; da Silva, A. B. F. J. Mol. Model. 2015, 21, 273-280.
  • 16. Ratuchne, F. MSc, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil, 2014.
  • 17. Bunge, C. F.; Barrientos, J. A.; Bunge, A. V.; Cogordan, J. A. Phys. Rev. A 1992, 46, 3691-3696.
  • 18. Koga, T.; Tatewaki, H.; Thakkar, A. J. J. Chem. Phys. 1994, 100, 8140-8144.
  • 19. Koga, T.; Watanabe, S.; Kanayama, K.; Yasuda, R.; Thakkar, A. J. J. Chem. Phys. 1995, 103, 3000-3005.
  • 20. Jorge, F. E.; Fantin, P. A. Chem. Phys. 1999, 249, 105. 21. Saito, S. L. At. Data Nucl. Data Tables 2009, 95, 836-870.
  • 22. Jorge, F. E.; de Castro, E. V. R.; da Silva, A. B. F. J. Chem. Phys. 1997, 216, 317-321.
  • 23. Atkins, P; Jones, L. Chemical Principles; W. H. Freeman and Company: New York, NY, USA, 2010.
  • 24. Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: New York, NY, USA, 2005. 25. Davidson, E. R. Chem. Phys. Lett. 1996, 260, 514-518.
  • 26. Schaefer, H. F. 3rd. The Electronic Structure of Atoms and Molecules. A Survey of Rigorous Quantum Mechanical Results; Addison-Wesley: Boston, MA, USA, 1972.
  • 27. Clementi, E; Chakravorty, S. J.; Coriongiu, C.; Flores, J. R.; Sonnad, V. In Modern Techniques in Computational Chemistry: MOTECC-91; Leiden, the Netherlands, 1991, pp. 23-110.
  • 28. Gordon, G. M. S; Schmidt, M. W. In Theory and Applications of Computational Chemistry, The First Forty Years; Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E., Eds. Elsevier: Amsterdam, the Netherlands, 2005, pp. 1167-1189.
  • 29. Frisch, M. J. Gaussian 03, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, USA, 2003.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

4D-QSAR analysis and pharmacophore modeling for alkynylphenoxyacetic acids as CRTh2 (DP2) receptor antagonists

Semiha KÖPRÜ, Emin SARIPINAR

Fakhri YOUSEF

Semiha KÖPRÜ, Emin SARIPINAR

Fabrication and electrochemical performance of La$_{0.595}$V$_{0.005}$Sr$_{0.4}$MnO$_{3-\delta }$ (LV05SM) cathode material for solid oxide fuel cells

Ayşenur Eslem KISA, Oktay DEMİRCAN

Fernando RATUCHNE, Ricardo CELESTE

Synthesis of acetamide derivatives of 1,2,4-triazole bearing azinane and their binding interactions with bovine serum albumin using spectroscopic techniques

Hira KHALID, Javed IQBAL, Aziz UR-REHMAN, Muhammad Athar ABBASI, Sabahat Zahra SIDDIQUI, Sabina Jhaumeer LAULLOO, Nausheen JOONDAN, Aniisah Banu TAUPASS, Shahid RASOOL, Syed Adnan Ali SHAH

Fabrication and electrochemical performance of La0.595V0.005Sr0.4MnO3−δ (LV05SM) cathode material for solid oxide fuel cells

Ayşenur Eslem KISA, Oktay DEMİRCAN

Experimental and theoretical study of NH3 adsorption and desorption over a Cu-chabazite NH3 -SCR catalyst

Mutlu ŞİMŞEK, Onur DEMİR, Deniz ŞANLI YILDIZ, Selmi Erim BOZBAĞ, Can ERKEY, Hüseyin Barkın ÖZENER, Gökhan HİSAR

Metal nanoparticles/carbon nanotube modified electrodes for voltammetric determination of boron

Nuri NAKİBOĞLU, Zekerya DURSUN, Lokman LİV

Design and synthesis of new naphtho[2,1-b]pyrano [2,3-d]pyrimidinones under classical and microwave conditions

Maher CHERIF, Mariem DEBBABI, Sarra CHORTANI, Anis ROMDHANE, Hichem BEN JANNET