Magnetite nanoparticles−based hydroxyl radical scavenging activity assay of antioxidants using N, N-dimethyl-p-phenylenediamine probe

Magnetite nanoparticles−based hydroxyl radical scavenging activity assay of antioxidants using N, N-dimethyl-p-phenylenediamine probe

Excessive amounts of reactive oxygen species (ROS), unless counterbalanced by antioxidants, can cause cellular damage under oxidative stress conditions; therefore, antioxidative defenses against ROS must be measured. With the development of nanotechnology, nanoparticles have found numerous applications in science, health, and industries. Magnetite nanoparticles $(Fe_3O_4:MNPs)$ have attracted attention because of their peroxidase-like activity. In this study, hydroxyl radicals (• OH) generated by MNPs-catalyzed degradation of $H_2O_2$ converted the N,N-dimethyl-p-phenylenediamine (DMPD) probe into its colored DMPD•+ radical cation, which gave an absorbance maximum at λ = 553 nm. In the presence of antioxidants, •OH was partly scavenged by antioxidants and produced less DMPD•+, causing a decrease in the 553 nm-absorbance. Antioxidant concentrations were calculated with the aid of absorbance differences between the reference and sample solutions. The linear working ranges and trolox equivalent antioxidant capacity coefficients of different classes of antioxidants were determined by applying the developed method. In addition, binary and ternary mixtures of antioxidants were tested to observe the additivity of absorbances of mixture constituents. The method was applied to real samples such as orange juice and green tea. Student t-test, F tests, and the Spearman’s rank correlation coefficient were used for statistical comparisons.

___

  • 1. Halliwell B. Free radicals and antioxidants–quo vadis? Trends in Pharmacological Sciences 2011; 32 (3): 125-130. doi: 10.1016/j. tips.2010.12
  • 2. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology 2008; 4: 278-286. doi: 10.1038/nchembio.85
  • 3. Krause KH. Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases. Experimental Gerontology 2007; 42 (4): 256-262. doi: 10.1016/j.exger.2006.10.011
  • 4. Qin B, Cartier L, Dubois-Dauphin M, Li B, Serrander L et al. A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiology of Aging 2006; 27 (11): 1577-1587. doi: 10.1016/j.neurobiolaging.2005.09.036
  • 5. Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiology of Disease 2000; 7 (4): 240-250. doi: 10.1006/nbdi.2000.0319
  • 6. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. Journal of Hypertension 2000; 18 (6): 655‐673.
  • 7. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry 2015; 30 (1): 11-26. doi: 10.1007/s12291-014-0446-0
  • 8. Pellegrini N, Re R, Yang M, Rice-Evans C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2′-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymology 1999; 299: 379-389. doi: 10.1016/S0076-6879(99)99037-7
  • 9. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 1999; 26 (9-10): 1231-1237. doi: 10.1016/S0891-5849(98)00315-3
  • 10. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181: 1199‐1200. doi: 10.1038/1811199a0
  • 11. Sanchez-Moreno C, Larrauri JA, Saura-Calixto FA. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 1998; 76 (2): 270-276. doi: 10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
  • 12. Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biology and Medicine 1993; 14 (3): 303‐311. doi: 10.1016/0891-5849(93)90027-r
  • 13. Ou B, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry 2001; 49 (10): 4619-4626. doi: 10.1021/jf010586o
  • 14. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 2004; 52 (26): 7970-7981. doi: 10.1021/jf048741x
  • 15. Apak R, Güçlü K, Özyürek M, Karademir SE, Altun M. Total antioxidant capacity assay of human serum using copper (II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radical Research 2005; 39 (9): 949-961. doi: 10.1080/10715760500210145
  • 16. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Analytical Biochemistry 1996; 239 (1): 70-76. doi: 10.1006/abio.1996.0292
  • 17. Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymology 1999; 299: 15-
  • 27. doi: 10.1016/S0076-6879(99)99005-5 18. Benzie IFF, Szeto YT. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry 1999; 47 (2): 633-636. doi: 10.1021/jf9807768
  • 19. Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/ antioxidant power assay. Journal of Agricultural and Food Chemistry 2000; 48 (8): 3396-3402. doi: 10.1021/jf9913458
  • 20. Bektaşoğlu B, Özyürek M, Güçlü K, Apak R. Hydroxyl radical detection with salicylate probe using modified CUPRAC spectrophotometry and HPLC. Talanta 2008; 77 (1): 90-97. doi: 10.1016/j.talanta.2008.05.043
  • 21. Demirci Çekiç S, Avan AN, Uzunboy S, Apak R. A colourimetric sensor for the simultaneous determination of oxidative status and antioxidant activity on the same membrane: N,N-Dimethyl-p-phenylene diamine (DMPD) on Nafion. Analytica Chimica Acta 2015; 865: 60-70. doi: 10.1016/j.aca.2015.01.041
  • 22. Kamer G, Demirata B, Bayraktar R, Özyurt D, Apak R. Nanoceria-based reactive species scavenging activity of antioxidants using N,Ndimethyl-pphenylenediamine (DMPD) probe. Analytical Methods 2019; 11 (14): 1908-1915. doi: 10.1039/C8AY02561D
  • 23. Can K, Üzer A, Apak R. A manganese oxide $(MnO_x)4-Based colorimetric nanosensor for indirect measurement of lipophilic and hydrophilic antioxidant capacity. Analytical Methods 2020; 12 (4): 448-455. doi: 10.1039/c9ay02027f
  • 24. Tufan AN, Baki S, Güçlü K, Özyürek M, Apak R. A novel differential pulse voltammetric (DPV) method for measuring the antioxidant capacity of polyphenols-reducing cupric neocuproine complex. Journal of Agricultural and Food Chemistry 2014; 62 (29): 7111-7117. doi: 10.1021/jf5017797
  • 25. Arman A, Üzer A, Sağlam Ş, Erçağ E, Apak R. Indirect electrochemical determination of antioxidant capacity with hexacyanoferrate(III) reduction using a gold nanoparticle-coated o-phenylenediamine-aniline copolymer electrode. Analytical Letters 2019; 52 (8): 1282-1297. doi: 10.1080/00032719.2018.1536137
  • 26. Gao L, Zhuang J, Nie L, Zhang J, Zhan Y et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology 2007; 2: 577-583. doi: 10.1038/nnano.2007.260
  • 27. Wang N, Zhu L, Wang D, Wang M, Lin Z et al. Sono-assisted preparation of highly-efficient peroxidase-like $Fe_3O_4$ magnetic nanoparticles for catalytic removal of organic pollutants with $H_2O_2$. Ultrasonics Sonochemistry 2010; 17 (3): 526-533. doi: 10.1016/j.ultsonch.2009.11.001
  • 28. Zhang S, Zhao X, Niu H, Shi Y, Cai Y et al. Superparamagnetic $Fe_3O_4$ nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. Journal of Hazardous Materials 2009; 167 (1-3): 560-566. doi: 10.1016/j.jhazmat.2009.01.024
  • 29. Wei H, Wang E. $Fe_3O_4$ Magnetic nanoparticles as peroxidase mimetics and their applications in $H_2O_2$ and glucose detection. Analytical Chemistry 2008; 80 (6): 2250-2254. doi: 10.1021/ac702203f
  • 30. Chang Q, Deng KJ, Zhu LH, Jiang GD, Yu C et al. Determination of hydrogen peroxide with the aid of peroxidase-like $Fe_3O_4$ magnetic nanoparticles as the catalyst. Microchimica Acta 2009; 165: 299-305. doi: 10.1007/s00604-008-0133-z
  • 31. Zhuang J, Zhang JB, Gao LZ, Zhang Y, Gu N et al. A novel application of iron oxide nanoparticles for detection of hydrogen peroxide in acid rain. Materials Letters 2008; 62 (24): 3972-3974. doi: 10.1016/j.matlet.2008.05.025
  • 32. Can Z, Üzer A, Türkekul K, Erçağ E, Apak R. Determination of triacetone triperoxide with a N,N-Dimethyl-p-phenylenediamine sensoron nafion using $Fe_3O_4$ magnetic nanoparticles. Analytical Chemistry 2015; 87 (19): 9589-9594. doi: 10.1021/acs.analchem.5b01775
  • 33. Miller J, Miller JC. Statistics and Chemometrics for Analytical Chemistry. Gosport, United Kingdom: Pearson, 2010.
  • 34. Tombacz E, Illes E, Majzik A, Hajdu A, Rideg N et al. Ageing in the inorganic nanoworld: example of magnetite nanoparticles in aqueous medium. Croatica Chemica Acta 2007; 80 (3-4): 503-515.
  • 35. Sun ZX, Su FW, Forsling W, Samskog POJ. Surface characteristics of magnetite in aqueous suspension. Journal of Colloid and Interface Science 1998; 197 (1): 151‐159. doi: 10.1006/jcis.1997.5239
  • 36. Bors W, Michel C. Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies. Free Radical Biology and Medicine 1999; 27 (11-12): 1413-1426. doi: 10.1016/S0891-5849(99)00187-2
  • 37. Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods in Enzymology 1990; 186: 344-355. doi: 10.1016/0076-6879(90)86128-i
  • 38. Wang P, Kang J, Zheng R, Yang Z, Lu J et al. Scavenging effects of phenylpropanoid glycosides from Pedicularis on superoxide anion and hydroxyl radical by the spin trapping method (95)02255-4. Biochemical Pharmacology 1996; 51 (5):687-691. doi: 10.1016/s0006- 2952(95)02255-4.
  • 39. Metodiewa D, Jaiswal AK, Cenas N, Dickancaité E, Segura-Aguilar J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Biology and Medicine 1999; 26 (1-2): 107‐116. doi: 10.1016/S0891-5849(98)00167-1