An efficient approach for the synthesis of novel methyl sulfones in acetic acid medium and evaluation of antimicrobial activity

An efficient approach for the synthesis of novel methyl sulfones in acetic acid medium and evaluation of antimicrobial activity

A series of nine methyl sulphones (3a–3i) starting from the aldehydes (1a–1i) were synthesized in two consecutive steps. In the first step, preparation of allyl alcohols (2a–2i) from their corresponding aldehydes by the reaction of sodium borohydride in methanol at room temperature is reported. Finally, methyl sulphones are synthesized by condensing sodium methyl sulfinates with allyl alcohols in the presence of $BF_3.Et_2$ O in acetic acid medium at room temperature for about 2–3 h. The reaction conditions are simple, yields are high (85%–95%), and the products were obtained with good purity. All the synthesized compounds were characterized by their $^{1} H, ^{13}C NMR$, and mass spectral analysis. All the title compounds were screened for antimicrobial activity. Among the compounds tested, the compound 3f has inhibited both Gram positive and Gram negative bacteria effectively and compound 3i has shown potent antifungal activity. These promising components may help to develop more potent drugs in the near future for the treatment of bacterial and fungal infections.

___

  • 1. Kumar R, Van DEEV. Recent approaches for C–C bond formation via direct dehydrative coupling strategies. Chemical Society Reviews 2013; 42: 1121-1146. doi: 10.1039/C2CS35397K
  • 2. Katritzky AR, Brycki BE. The mechanisms of nucleophilic substitution in aliphatic compounds. Chemical Society Reviews 1990; 19: 83- 105. doi: 10.1039/CS9901900083
  • 3. Saito T, Nishimoto Y, Yasuda M, Akio B. Direct coupling reaction between alcohols and silylcompounds: enhancement of lewisacidity of Me3 SiBr using InCl3 . Journal of Organic Chemistry 2006; 71 (22): 8516-8522. doi: 10.1021/jo061512k
  • 4. Anlian Z, Lingjun L, Jianji W, Kelei Z. Direct nucleophilic substitution reaction of alcohols mediated by a zinc-based ionic liquid. Green Chemistry 2011; 13: 1244-1250. doi: 10.1039/C0GC00763C
  • 5. Hang S, Liangzhen H, Qing L, Muhammad IH, Jing P et al. Iron-catalysed sequential reaction towards α-aminonitriles from secondary amines, primary alcohols and trimethylsilyl cyanide. Chemical Communications 2016; 52: 2776-2779. doi: 10.1039/C5CC10346K
  • 6. Vanos CM, Lambert TH. Development of a catalytic platform for nucleophilic substitution: cyclopropenone‐catalyzed chlorodehydration of alcohols. Angewandte Chemie International Edition 2011; 50 (51): 12222-12226. doi: 10.1002/anie.201104638
  • 7. Makoto Y, Satoshi Y, Yoshiyuki O, Akio B. Indium-catalyzeddirect chlorination of alcohols using chlorodimethylsilane−benzil as a selective and mild system. Journal of the American Chemical Society 2004; 126 (23): 7186-7187. doi: 10.1021/ja048688t
  • 8. Yasuda M, Somyo T, Baba A. Direct carbon-carbon bond formation from alcohols and active methylenes, alkoxyketones, or indolescatalyzed by indium trichloride. Angewandte Chemie 2006; 118 (5): 807-810 doi: 10.1002/ange.200503263
  • 9. Tao W, Ruida M, Liu L, Zhuang PZ. Solvent-free solid acid-catalyzednucleophilic substitution of propargylic alcohols: a green approach for the synthesis of 1,4-diynes. Green Chemistry 2010; 12: 1576-1579. doi: 10.1039/C0GC00117A
  • 10. Sundararaju B, Achard M, Bruneau C. Transition metal catalyzed nucleophilicallylic substitution: activation of allylic alcohols via π-allylic species. Chemical Society Reviews 2012; 41: 4467-4483. doi: 10.1039/C2CS35024F
  • 11. Nguyen TV. Bekensir A. Aromatic cationactivation: Nucleophilicsubstitution of alcohols and carboxylic acids. Organic Letters 2014; 16 (6): 1720-1723. doi: 10.1021/ol5003972
  • 12. Ohshima T, Ipposhi J, Nakahara Y, Ryozo S, Kazushi M et al. Aluminum triflate as a powerful catalyst for direct amination of alcohols, including electron‐withdrawing group‐substituted benzhydrols. Advanced Synthesis and Catalysis 2012; 354: 2447-2452. doi: 10.1002/ adsc.201200536
  • 13. Murakami T, Furusawa K. One-pot synthesis of aryl sulfones from alcohols. Synthesis 2002; 4: 479-482. doi: 10.1055/s-2002-20958
  • 14. Li JQ, Zhang XH, Shen H, Qing L, Pan J et al. Boron trifluoride diethylether‐catalyzedetherification of alcohols: a metal‐free pathway to diphenylmethylethers. Advanced Synthesis and Catalysis 2015; 357 (14): 3115-3120. doi: 10.1002/adsc.201500663
  • 15. Pan J, Li J, Huang R, Zhang X, Shen H et al. Metal-free direct N-benzylation of sulfonamides with benzyl alcohols by employing boron trifluoride–diethyl ether complex. Synthesis 2015; 47 (8): 1101-1108. doi: 10.1055/s-0034-1380129
  • 16. Zhang ST, Zhang XH, Ling XG, Chao He, Ruofeng H et al. Superacid $BF_3–H_2$ O promoted benzylation of arenes with benzyl alcohols and acetates initiated by trace water. RSC Advances 2014; 4: 30768-30774. doi: 10.1039/C4RA04059G
  • 17. Fischli A, Mayer H, Simon W, Stoller HJ. A synthesis of vitamin A according to the sulfone method. Helvetica Chimica Acta 1976; 59 (2): 397-405. doi: 10.1002/hlca.19760590208
  • 18. Jerkeman P, Lindberg B. Sulphones of lignin models, synthesis and reactions in alkali. Acta Chemica Scandinavica 1964; 18: 1477-1482. doi: 10.3891/acta.chem.scand.18-1477
  • 19. Forzelius SE, Jerkeman LB. Sulphones of some lignin models. Acta Chemica Scandinavica 1963; 17: 1470-1471. doi: 10.3891/acta.chem. scand.17-1470a
  • 20. Castedo L, Delamano J, Lopez C, Marra BL, Gabriel T. Synthesis of five-membered heteroarylmethyl p-tolylsulfones from heteroarenemethanols under acidic conditions: Scope and Limitations. Heterocycles 1994; 38 (3): 495-502. doi: 10.3987/COM-93-6429.
  • 21. Ju Y, Kumar D, Varma RS. Revisiting nucleophilicsubstitution reactions: microwave-assisted synthesis of azides, thiocyanates, and sulfones in an aqueous medium. Journal of Organic Chemistry 2006; 71 (17): 6697-6700. doi: 10.1021/jo061114h
  • 22. Xu YF, Liu P, Li SL. Peipei S. Palladium-catalyzed ortho-sulfonylation of 2-aryloxypyridines and subsequent formation of orthosulfonylated phenols. Journal of Organic Chemistry 2015; 80 (2): 1269-1274. doi: 10.1021/jo5026095
  • 23. Razieh F, Hamid A, Majid M, Mona M. Nano-rod catalysts: building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around vanadium oxide ships. Journal of Molecular Catalysis A: Chemical 2013; 374: 46-52. doi: 10.1016/j.molcata.2013.03.020
  • 24. Miles WJ, Scott WB, Neal PM, Robert GB, Vincent M. Application of fundamental organometallic chemistry to the development of a gold‐ catalyzed synthesis of sulfinate derivatives. Angewandte Chemie International Edition 2014; 53: 4404-4407. doi: 10.1002/anie.201400037
  • 25. Felpin FX, Landais Y. Practical Pd/C-mediated allylicsubstitution in water. Journal of Organic Chemistry 2005; 70 (16): 6441-6446. doi: 10.1021/jo050952t
  • 26. Crandall JK, Pradat C. Synthesis of sulfones by phase-transfer alkylation of arenesulfinate salts. Journal of Organic Chemistry 1985; 50 (8): 1327-1329. doi: 10.1021/jo00208a044
  • 27. Zhang D, Cui XL, Zhang Q. Pd-catalyzed direct C–H bond sulfonylation of azobenzenes with arylsulfonyl chlorides. Journal of Organic Chemistry 2015; 80 (3): 1517-1522. doi: 10.1021/jo502451k
  • 28. Reddy LR, Hu B, Prashad M, Kapa P. An unexpected reaction of arenesulfonyl cyanides with allylic alcohols: Preparation of trisubstituted allyl sulfones. Angewandte Chemie 2009; 48 (1): 172-174. doi: 10.1002/anie.200803836
  • 29. Beaulieu GD, Wangaand Z, David AE. A mild and efficient new synthesis of aryl sulfones from boronic acids and sulfinic acid salts. Tetrahedron Letters 2004; 45 (16): 3233-3236. doi: 10.1016/j.tetlet.2004.02.127
  • 30. Wu XS, Chen Y, Li MB, Meng-GZ, Shi-KT. Direct substitution of primary allylic amines with sulfinate salts. Journal of the American Chemical Society 2012; 134 (36): 14694-14697. doi: 10.1021/ja306407x
  • 31. Amarnath RM, Surendra RP, Sreedhar B. Iron(III) chloride-catalyzed direct sulfonylation of alcohols with sodium arenesulfinates. Advanced Synthesis and Catalysis 2010; 352 (11): 1861-1869. doi: 10.1002/adsc.200900905
  • 32. Huang M, Hu L, Shen H, Qing L, Muhammad IH et al. Sulfination of alcohols with sodium sulfinates promoted by $BF_3.OEt_2$ : an unexpected access. Green Chemistry 2016; 18: 1874-1879. doi: 10.1039/C5GC02846A
  • 33. Navarroa L, Rosella G, Sanchezc S, Boixareud N, Porsd K et al. Synthesis and biological properties of aryl methyl sulfones. Bioorganic and Medicinal Chemistry 2018; 26 (14): 4113-4126. doi: 10.1016/j.bmc.2018.06.038
  • 34. Yuan G, Zheng J, Gao X, Li X, Huang L et al. Copper-catalyzed aerobic oxidation and cleavage/formation of C–S bond: a novel synthesis of aryl methyl sulfones from aryl halides and DMSO. Chemical Communications 2012; 48: 7513-7515. doi: 10.1039/C2CC32964F
  • 35. Jin T, Zhao Y, Ma Y, Li T. A practical and efficient method for the preparation of aromatic sulfones by the reaction of aryl sulfonyl chlorides with arenes catalysed by Fe$(OH)_3$. Indian Journal of Chemsitry Section B 2005; 44B (10): 2183-2185.
  • 36. Zhu W, Ma D. Synthesis of aryl sulfonesvia l-proline-promoted CuI-catalyzed coupling reaction of aryl halides with sulfinic acid salts. Journal of Organic Chemistry 2005; 70 (7): 2696-2700. doi: 10.1021/jo047758b
  • 37. Lai J, Yuan G, A novel synthesis of aryl methyl sulfones and β-hydroxysulfones from sodium sulfinates and di-tert-butyl peroxide in 4H_2O4 medium. Tetrahedron Letters 2018; 59 (6): 524-527. doi: 10.1016/j.tetlet.2017.12.074
  • 38. Wang M, Zhao J, Jiang X. Aryl methyl sulfone construction from eco-friendly inorganic sulfur dioxide and methyl reagents. ChemSusChem 2019; 12 (13): 3064-3068. doi: 10.1002/cssc.201802919
  • 39. Trost BM, Kalnmals CA. Sulfones as chemical chameleons: versatile synthetic equivalents of small molecule synthons. Chemistry: A European Journal 2019; 25 (48): 11193-11213. doi: 10.1002/chem.201902019
  • 40. Ravi KG, Chandra MK, Manideepa I, Ramya KP, Hari BB. Synthesis of new analogs of 3-methyl-[1,2,4] triazolo [3,4-a] phthalazines via Suzuki coupling and evaluation of their anticancer and antimicrobial activity. Mediterranean Journal of Chemistry 2019; 8 (4): 261-269. doi: 10.13171/mjc841905257hbb
  • 41. Lourdu RB, Vijay K, Sivanagi RM, Bala MK, Hari BB. Synthesis, characterization, anticancer and antimicrobial activity studies of novel isomeric 2,4-disubstituted ureide derivatives of pyrimidinopiperidines. Chemistry Select 2019; 4 (1): 441-450. doi: 10.1002/slct.201803294
  • 42. Baby RM, Vijaya K, Surendranatha RO, Murthy SNB, Hari BB. Synthesis, cytotoxicity and antimicrobial evolution of some new 2-Aryl,5-substituted 1,3,4-Oxadiazoles and 1,3,4thiadiazoles. Chemistry Africa 2019; 2 (1): 15-20.
  • 43. Basavaiah CH, Jalaja CH, Raghu RM, Asha BP, Hari BB. Synthesis and antimicrobial studies of graphene-silver nanocomposite through a highly environmentally benign reduction methodology. Materials Technology: Advanced Performance Materials 2018; 33 (11): 730-736. doi: 10.1080/10667857.2018.1498608
  • 44. Ramesh N, Ganagadhara RM, Vasu BA, Nagababu P, Umamaheswara RV et al. Synthesis, antibacterial activity, and docking studies of some novel N-benzylidene-2-(2,4,5-trifluorophenyl) acetohydrazides. Research on Chemical Intermediates 2017; 43 (7): 4145-4164.
  • 45. Baidya M, Kobayashi S, Mayr H. Nucleophilicity and nucleofugality of phenylsulfinate (PhSO2−): a key to understanding its ambident reactivity. Journal of the American Chemical Society 2010; 132 (13): 4796-4805. doi: 10.1021/ja9102056
  • 46. Xu F, Savary K, Williams JM, Grabowski EJJ, Reider PJ. Novel synthesis of sulfones from α,α-dibromomethyl aromatics. Tetrahedron Letters 2003; 44 (6): 1283-1286. doi: 10.1016/S0040-4039(02)02769-7
  • 47. Collins CH, Lyre PM, Grange JM. Microbiological methods. Butterworths, London: Arnold, 1989.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Ibrahim KULA, Christian GUTSCHE, Yunus ERDOGAN, Andreas FİTTSCHEN, Ursula Elisabeth Adriane FİTTSCHEN

Water management improvement in PEM fuel cells via addition of PDMS or APTES polymers to the catalyst layer

Hande UNGAN, Ayşe BAYRAKÇEKEN YURTCAN

Evin Sahin SADİK, Hamdi Melih SARAOGLU, Ilke GUROL, Mehmet Ali EBEOGLU, Fatma Emel KOCAK

Serkan EYMUR, Enis TASCİ, Arzu UYANİK, Mustafa YİLMAZ

Gollapudi Ravi KUMAR, Chandra Rao DASİREDDY, Ravi VARALA, Vijay KOTRA, Hari Babu BOLLİKOLLA

Application of synthesized copper nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves as a colorimetric sensor for the detection of $Ag^+$

Ayaz Ali MEMON, Syed Tufail Hussain SHERAZI, Sarfaraz Ahmed MAHESAR, Roomia MEMON, Muhammad Raza SHAH, Kausar RAJAR, Muhammad Hassan AGHEEM, Siraj UDDIN, Aamna BALOUCH

Magnetite nanoparticles−based hydroxyl radical scavenging activity assay of antioxidants using N, N-dimethyl-p-phenylenediamine probe

Mustafa Reşat APAK, Büşra KESKİN, Ayşem ARDA, Ziya CAN, Erol ERÇAĞ

A road map to assess critical materials content in boron industrial wastes using sustainable micro-X-ray fluorescence and total reflection X-ray fluorescence instrumentation

İbrahim KULA, Yunus ERDOĞAN, Christian GUTSCHE, Andreas FITTSCHEN, Ursula Elisabeth Adriane FITTSCHEN

Shaya AL-RAQA, Ipek OMEROGLU, Dogan ERBAHAR, Mahmut DURMUS

A novel molecular imprinting polymer for the selective adsorption of D-arabinitol from spiked urine

Siswandono SISWODIHARDJO, Yuni RETNANINGTYAS, Ganden SUPRIYANTO, Ni NYOMAN TRI PUSPANINGSIH, Roedi IRAWAN