Density functional theory-supported studies of structural and electronic properties of substituted-phenol derivatives synthesized by efficient O- or C-arylation via Chan–Lam or Suzuki cross-coupling reactions

Density functional theory-supported studies of structural and electronic properties of substituted-phenol derivatives synthesized by efficient O- or C-arylation via Chan–Lam or Suzuki cross-coupling reactions

The present study reports the efficient synthesis and computational studies of the structural and electronicproperties of some interesting substituted phenol derivatives. Efficient and versatile procedures to synthesize a seriesof diaryl ether derivatives (2a–2c, 4a–4h) and bis-arylated products (5a–5c) are described. In this manuscript, usingthe commercially available starting material 1 and 3, a 1-step approach was developed by means of Cu(II)-mediatedChan–Lam and Pd-catalyzed Suzuki cross-coupling reactions to synthesize diaryl ether and bis-arylated products withmoderate to good yields. The starting substrates, 2-bromo-4-methylphenol 1 or 2,4-dibromophenol 3, were both treatedwith several arylboronic acids, which led to the development of new carbon-oxygen bonds through Chan–Lam reactions.In addition, the hydroxyl group of 2,4-dibromophenol 3 was protected with isopropyl bromide to produce 4, which wasthen treated with arylboronic acids to synthesize the corresponding bis-arylated products through Suzuki cross-couplingreactions. Density functional theory calculations provided insight into the structural and electronic properties of thesynthesized compounds. An analysis of the frontier orbitals and other reactivity descriptors, including the ionizationpotential, electron affinity, chemical hardness, electronic chemical potential, and electrophilicity index, is presented,which shows that compound 4c was the most reactive, while 4f and 4h were the most stable.

___

  • 1. Heck RF, Nolley JP. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. Journal of Organic Chemistry 1972; 37: 2320-2322. doi: 10.1021/jo00979a024
  • 2. Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Letters 1975; 16: 4467-4470. doi: 10.1016/S0040-4039(00)91094-3
  • 3. King AO, Okukado N, Negishi E. Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. Journal of the Chemical Society, Chemical Communications 1977; 1977: 683-684. doi: 10.1039/C39770000683
  • 4. Milstein D, Stille JK. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. Journal of the American Chemical Society 1978; 100: 3636-3638. doi: 10.1021/ja00479a077
  • 5. Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. Journal of Organometallic Chemistry 1999; 576: 147-168. doi: 10.1016/S0022-328X(98)01055-9
  • 6. Hall DG. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Weinheim, Germany: Wiley-VCH, 2005. doi: 10.1002/3527606548
  • 7. Ley SV, Thomas AW. Modern synthetic methods for copper-mediated C (aryl)-O, C (aryl)-N, and C (aryl)-S bond formation. Angewandte Chemie International Edition 2003; 42: 5400-5449. doi: 10.1002/anie.200300594
  • 8. Li J. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications. Fourth Expanded Edition. Berlin, Germany: Springer-Verlag 2009. doi: 10.1007/978-3-642-01053-8
  • 9. Lindley J. Tetrahedron report number 163: copper assisted nucleophilic substitution of aryl halogen. Tetrahedron 1984; 40: 1433-1456. doi: 10.1016/S0040-4020(01)91791-0
  • 10. Chan DM, Monaco KL, Wang RP, Winters MP. New N-and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Letters 1998; 39: 2933-2936. doi: 10.1016/S0040-4039(98)00503-6
  • 11. Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews 1995; 95: 2457-2483. doi: 10.1021/cr00039a007
  • 12. Suzuki A. Cross-coupling reactions via organoboranes. Journal of Organometallic Chemistry 2002; 653: 83-90. doi: 10.1016/S0022-328X(02)01269-X
  • 13. De Wit CA. An overview of brominated flame retardants in the environment. Chemosphere 2002; 46: 583-624. doi: 10.1016/S0045-6535(01)00225-9
  • 14. Frederiksen M, Vorkamp K, Thomsen M, Knudsen LE. Human internal and external exposure to PBDEs–a review of levels and sources. International Journal of Hygiene and Environmental Health 2009; 212: 109-134. doi: 10.1016/j.ijheh.2008.04.005
  • 15. Guerra P, Alaee M, Eljarrat E, Barceló D. Introduction to Brominated Flame Retardants: Commercially Products, Applications, and Physicochemical Properties. Berlin, Germany: Springer-Verlag, 2010. doi: 10.1007/698 2010 93
  • 16. Evans DA, Katz JL, West TR. Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids: an expedient synthesis of thyroxine. Tetrahedron Letters 1998; 39: 2937-2940. doi: 10.1016/S0040- 4039(98)00502-4
  • 17. Lam PY, Clark CG, Saubern S, Adams J, Averill KM et al. Copper promoted aryl/saturated heterocyclic CN bond cross-coupling with arylboronic acid and arylstannane. Synlett 2000; 674-676. doi: 10.1055/s-2000-6628
  • 18. He J, Feng L, Li J, Tao R, Wang F et al. Design, synthesis and biological evaluation of novel 2-methylpyrimidine-4- ylamine derivatives as inhibitors of Escherichia coli pyruvate dehydrogenase complex E1. Bioorganic & Medicinal Chemistry 2012; 20: 1665-1670. doi: 10.1016/j.bmc.2012.01.019
  • 19. Smith GB, Dezeny GC, Hughes DL, King AO, Verhoeven TR. Mechanistic studies of the Suzuki cross-coupling reaction. Journal of Organic Chemistry 1994; 59: 8151-8156. doi: 10.1021/jo00105a036
  • 20. Dang TT, Rasool N, Dang TT, Reinke H, Langer P. Synthesis of tetraarylthiophenes by regioselective Suzuki crosscoupling reactions of tetrabromothiophene. Tetrahedron Letters 2007; 48: 845-847. doi: 10.1016/j.tetlet.2006.11.152
  • 21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 09 Revision D. 01. Wallingford, CT, USA: Gaussian Inc., 2010.
  • 22. Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. Journal of Chemical Physics 1999; 110: 6158-6170. doi: 10.1063/1.478522
  • 23. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters 1996; 77: 3865-3868. doi: 10.1103/PhysRevLett.77.3865
  • 24. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters 1997; 78: 1396-1396. doi: 10.1103/PhysRevLett.78.1396
  • 25. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry 2006; 27: 1787-1799. doi: 10.1002/jcc.20495
  • 26. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics 2010; 132: 154104. doi: 10.1063/1.3382344
  • 27. Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry 2011; 32: 1456-1465. doi: 10.1002/jcc.21759
  • 28. Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Physical Chemistry Chemical Physics 2005; 7: 3297-3305. doi: 10.1039/b508541a
  • 29. Cammi R, Mennucci B, Tomasi J. Fast evaluation of geometries and properties of excited molecules in solution:? a Tamm-Dancoff model with application to 4-dimethylaminobenzonitrile. Journal of Physical Chemistry A 2000; 104: 5631-5637. doi: 10.1021/jp000156l
  • 30. Cossi M, Barone V. Solvent effect on vertical electronic transitions by the polarizable continuum model. Journal of Chemical Physics 2000; 112: 2427-2435. doi: 10.1063/1.480808
  • 31. Cossi M, Barone V. Time-dependent density functional theory for molecules in liquid solutions. Journal of Chemical Physics 2001; 115: 4708-4717. doi: 10.1063/1.1394921
  • 32. Cossi M, Rega N, Scalmani G, Barone V. Polarizable dielectric model of solvation with inclusion of charge penetration effects. Journal of Chemical Physics 2001; 114: 5691-5701. doi: 10.1063/1.1354187
  • 33. Cossi M, Scalmani G, Rega N, Barone V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. Journal of Chemical Physics 2002; 117: 43-54. doi: 10.1063/1.1480445
  • 34. Cossi M, Rega N, Scalmani G, Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry 2003; 24: 669-681. doi: 10.1002/jcc.10189
  • 35. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chemical Reviews 2005; 105: 2999-3093. doi: 10.1021/cr9904009
  • 36. Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B 2009; 113: 6378-6396. doi: 10.1021/jp810292n
  • 37. Legault, CY. CYLview b. Sherbrooke, Canada: Université de Sherbrooke, 2009.
  • 38. Hashmi MA, Lein M. Carbon nano-onions as photosensitizers: stacking-induced red-shift. Journal of Physical Chemistry C 2018; 122: 2422-2431. doi: 10.1021/acs.jpcc.7b11421
  • 39. Arshad MN, Bibi A, Mahmood T, Asiri AM, Ayub K. Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study. Molecules 2015; 20: 5851-5874. doi: 10.3390/molecules20045851
  • 40. Zhan CG, Nichols JA, Dixon DA. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy:? molecular properties from density functional theory orbital energies. Journal of Physical Chemistry A 2003; 107: 4184-4195. doi: 10.1021/jp0225774
  • 41. Nayak PK, Periasamy N. Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using ‘solvation’ model and DFT. Organic Electronics 2009; 10: 1396-1400. doi: 10.1016/j.orgel.2009.06.011
  • 42. Rizwan K, Zubair M, Rasool N, Ali S, Zahoor AF et al. Regioselective synthesis of 2-(bromomethyl)-5-arylthiophene derivatives viapalladium (0) catalyzed Suzuki cross-coupling reactions: as antithrombotic and haemolytically active molecules. Chemistry Central Journal 2014; 8: 74. doi: 10.1186/s13065-014-0074-z
  • 43. Ikram HM, Rasool N, Ahmad G, Chotana GA, Musharraf SG et al. Selective C-arylation of 2, 5-dibromo-3- hexylthiophene via Suzuki cross coupling reaction and their pharmacological aspects. Molecules 2015; 20: 5202- 5214. doi: 10.3390/molecules20035202
  • 44. Ikram HM, Rasool N, Zubair M, Khan KM, Abbas Chotana G et al. Efficient double Suzuki cross-coupling reactions of 2,5-dibromo-3-hexylthiophene: anti-tumor, haemolytic, anti-ahrombolytic and biofilm inhibition studies. Molecules 2016; 21: 977. doi: 10.3390/molecules21080977
  • 45. Ahmad G, Rasool N, Ikram HM, Gul Khan S, Mahmood T et al. Efficient synthesis of novel pyridine-based derivatives via Suzuki cross-coupling reaction of commercially available 5-bromo-2-methylpyridin-3-amine: quantum mechanical investigations and biological activities. Molecules 2017; 22: 190. doi: 10.3390/molecules22020190