The effect of starting material types on the structure of graphene oxide and graphene

The effect of starting material types on the structure of graphene oxide and graphene

In this study, the effects of starting material types on graphene oxide (GO) are reported with the aimof developing graphene (GR) synthesis. The GOs were prepared from natural graphite (NG) powder and graphitenanoplate (GNp) based on the Hummers method. Two kinds of GR were successfully synthesized using GOs, which were prepared from NG and GNp in the presence of hydrazine and ammonia for 24 h at a 100 ◦ C reaction temperature. The synthesized GOs and GRs were characterized by X-ray diffraction (XRD) techniques, Fourier transform infrared, highcontrast transmission electron microscopy (HCTEM), dispersive Raman spectroscopic analyses, and elemental analyses. HCTEM analyses of GOs and GRs exhibited largely folded, convoluted, and entwined GO and GR structures. The XRD and Raman analyses showed that the number of layers of GO1, GO2, GR1, and GR2 were 9.27, 13.53, 4.11, and 5.26, respectively. On the other hand, GR1, prepared from NG powder, showed much higher quality (peak intensities (I D /I G) = 1.53, C/O = 3.64) than GR2, which was prepared from GNp (I D /I G = 1.64, C/O = 3.17). Thus, this study provides a way to produce higher quality GOs and GRs.

___

  • 1. Saeed K, Khan I. Efficient photodegradation of neutral red chloride dye in aqueous medium using graphene/cobalt– manganese oxides nanocomposite. Turkish Journal of Chemistry 2017; 41: 391-398. doi: 10.3906/kim-1606-44
  • 2. Li J, Shi H, Li N, Li M, Li J. Facile preparation of graphite intercalation compounds in alkali solution. Central European Journal of Chemistry 2010; 8: 783-788. doi: 10.2478/s11532-010-0048-5
  • 3. Çelik Y, Flahaut E, Suvacı E. A comparative study on few-layer graphene production by exfoliation of different starting materials in a low boiling point solvent. FlatChem 2017; 1: 74-88. doi: 10.1016/j.flatc.2016.12.002
  • 4. Sreedhar D, Devireddy S, Veeredhi VR. Synthesis and study of reduced graphene oxide layers under microwave irradiation. Materials Today Proceedings 2018; 5: 3403-3410. doi: 10.1016/j.matpr.2017.11.585
  • 5. Ozsoy N, Ozsoy M, Mimaroglu A. Taguchi approach to tribological behaviour of chopped carbon fiber-reinforced epoxy composite materials. Acta Physica Polonica A 2017; 132: 846-848. doi: 10.12693/APhysPolA.132.846
  • 6. Wang K, Ruan J, Song H, Zhang J, Wo Y et al. Biocompatibility of graphene oxide. Nanoscale Research Letters 2011; 6: 1-8. doi: 10.1007/s11671-010-9751-6
  • 7. Sinclair RC, Suter JL, Coveney PV. Micromechanical exfoliation of graphene on the atomistic scale. Physical Chemistry Chemical Physics 2019; 21: 5716-5722. doi: 10.1039/c8cp07796g
  • 8. Yılmaz M, Eker YR. Synthesis of graphene via chemical vapour deposition on copper substrates with different thicknesses. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 2017; 18 (2): 289-300. doi:1 0.18038/aubtda.279709
  • 9. Çelebi C, Yanik C, Demirkol AG, Kaya II. The effect of a SiC cap on the growth of epitaxial graphene on SiC in ultra high vacuum. Carbon 2012; 50: 3026-3031. doi: 10.1016/j.carbon.2012.02.088
  • 10. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009; 458: 872-876. doi: 10.1038/nature07872
  • 11. Rangel NL, Sotelo JC, Seminario JM. Mechanism of carbon nanotubes unzipping into graphene ribbons. Journal of Chemical Physics 2009; 131: 1-5. doi: 10.1063/1.3170926
  • 12. Koehler FM, Stark WJ. Organic synthesis on graphene. Accounts of Chemical Research 2013; 46: 2297-2306. doi: 10.1021/ar300125w
  • 13. Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y et al. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 2005; 43: 641-649. doi: 10.1016/j.carbon.2004.10.035
  • 14. Bai S, Shen X. Graphene-inorganic nanocomposites. The Royal Society of Chemistry 2012; 2: 64-98. doi: 10.1039/c1ra00260k
  • 15. Kim J, Cote LJ, Huang J. Two dimensional soft material: new faces of graphene oxide. Accounts of Chemical Research 2012; 45: 1356-1364. doi: 10.1021/ar300047s
  • 16. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH et al. Chemical functionalization of graphene and its applications. Progress in Materials Science 2012; 57: 1061-1105. doi: 10.1016/j.pmatsci.2012.03.002
  • 17. Jankovský O, Marvan P, Nováček M, Luxa J, Mazánek V et al. Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Applied Materials Today 2016; 4: 45-53. doi: 10.1016/j.apmt.2016.06.001
  • 18. Wu ZS, Ren W, Gao L, Liu B, Jiang C et al. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 2009; 47: 493-499. doi: 10.1016/j.carbon.2008.10.031
  • 19. Botas C, Álvarez P, Blanco C, Santamaría R, Granda M et al. The effect of the parent graphite on the structure of graphene oxide. Carbon 2012; 50: 275-282. doi: 10.1016/j.carbon.2011.08.045
  • 20. Yokwana K, Kuvarega AT, Mhlanga SD, Nxumalo EN. Mechanistic aspects for the removal of Congo red dye from aqueous media through adsorption over N-doped graphene oxide nanoadsorbents prepared from graphite flakes and powders. Physics and Chemistry of the Earth 2018; 107: 58-70. doi: 10.1016/j.pce.2018.08.001
  • 21. Chen G, Weng W, Wu D, Wu C. PMMA/graphite nanosheets composite and its conducting properties. European Polymer Journal 2003; 39: 2329-2335. doi: 10.1016/j.eurpolymj.2003.08.005
  • 22. Chen G, Wu C, Weng W, Wu D, Yan W. Preparation of polystyrene/graphite nanosheet composite. Polymer 2003; 44: 1781-1784. doi: 10.1016/S0032-3861(03)00050-8
  • 23. Liu X, Wu Y, Yang Z, Pan F, Zhong X et al. Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries. Journal of Power Sources 2015; 293: 799-805. doi: 10.1016/j.jpowsour.2015.05.074
  • 24. Zhao B, Zhang G, Song J, Jiang Y, Zhuang H et al. Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochimica Acta 2011; 56: 7340-7346. doi: 10.1016/j.electacta.2011.06.037
  • 25. Kassaee MZ, Motamedi E, Majdi M. Magnetic Fe 3 O4 -graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal 2011; 172: 540-549. doi: 10.1016/j.cej.2011.05.093
  • 26. Ansón-Casaos A, Puértolas JA, Pascual FJ, Hernández-Ferrer J, Castell P et al. The effect of gamma-irradiation on few-layered graphene materials. Applied Surface Science 2014; 301: 264-272. doi: 10.1016/j.apsusc.2014.02.057
  • 27. Bykkam S, Rao V, Chakra S, Thunugunta T. Synthesis and characterization of graphene oxide and its antimicrobial activity against Klebseilla and Staphylococus. International Journal of Advanced Biotechnology and Research 2013; 4: 142-146.
  • 28. Yang Y, Qi S, Wang J. Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization. Journal of Alloys and Compounds 2012; 520: 114-121. doi: 10.1016/j.jallcom.2011.12.136
  • 29. Pan S, Liu X. ZnS-Graphene nanocomposite: synthesis, characterization and optical properties. Journal of Solid State Chemistry 2012; 191: 51-56. doi: 10.1016/j.jssc.2012.02.048
  • 30. Chen G, Weng W, Wu D, Wu C, Lu J et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 2004; 42: 753-759. doi: 10.1016/j.carbon.2003.12.074
  • 31. Roy Chowdhury D, Singh C, Paul A. Role of graphite precursor and sodium nitrate in graphite oxide synthesis. The Royal Society of Chemistry 2014; 4: 15138-15145. doi: 10.1039/c4ra01019a
  • 32. Yazıcı M, Tiyek İ, Ersoy MS, Alma MH, Dönmez U et al. Synthesis of graphene oxide (GO) by modified Hummers methods and its characterization. Gazi Üniversitesi Fen Bilim Dergisi Part C Tasarım ve Teknoloji 2016; 4: 41-48 (in Turkish with an abstract in English).
  • 33. Andonovic B, Temkov M, Ademi A, Petrovski A, Grozdanov A et al. Laue functions model vs. scherrer equation in determination of graphene layers number on the ground of XRD data. Journal of Chemical Technology and Metallurgy 2014; 49: 545-550.
  • 34. Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A. Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Advances in Materials Science and Engineering 2013; 2013: 1-5. doi: 10.1155/2013/923403
  • 35. Thema FT, Moloto MJ, Dikio ED, Nyangiwe NN, Kotsedi L et al. Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. Journal of Chemistry 2013; 2013: 1-6. doi: 10.1155/2013/150536
  • 36. Min YL, Zhang K, Zhao W, Zheng FC, Chen YC et al. Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chemical Engineering Journal 2012; 193-194: 203-210. doi: 10.1016/j.cej.2012.04.047
  • 37. Venkata Ramana G, Padya B, Srikanth VVSS, Jain PK, Padmanabham G et al. Electrically conductive carbon nanopipe-graphite nanosheet/polyaniline composites. Carbon 2011; 49: 5239-5245. doi: 10.1016/j.carbon.2011.07.041
  • 38. Park S, An J, Potts JR, Velamakanni A, Murali S et al. Hydrazine-reduction of graphite and graphene oxide. Carbon 2011; 49: 3019-3023. doi: 10.1016/j.carbon.2011.02.071
  • 39. Mohanapriya K, Jha N. Fabrication of one dimensional graphene nanoscrolls for high performance supercapacitor application. Applied Surface Science 2018; 449: 461-467. doi: 10.1016/j.apsusc.2017.12.186
  • 40. Huang SY, Zhao B, Zhang K, Yuen MMF, Xu JB et al. Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity. Scientific Reports 2015; 5: 1-11. doi: 10.1038/srep14260
  • 41. Morales-Narváez E, Sgobbi LF, Machado SAS, Merkoçi A. Graphene-encapsulated materials: synthesis, applications and trends. Progress in Materials Science 2017; 86: 1-24. doi: 10.1016/j.pmatsci.2017.01.001