An experimental and theoretical analysis of supercritical carbon dioxide extraction of Cu(II) and Pb(II) ions in the form of dithizone bidentate complexes
An experimental and theoretical analysis of supercritical carbon dioxide extraction of Cu(II) and Pb(II) ions in the form of dithizone bidentate complexes
For more than five decades, dithizone has been widely used as an analytical reagent. This ligand forms strongly colored complexes with metal ions and this ability to form complexes can be used for extraction/removal of certain metal ions in addition to analytical determination. In static mode, the supercritical carbon dioxide extraction of copper and lead ions from aqueous solutions after complexation by the dithizone ligand is studied (at two different conditions: a) p = 120 bar, T = 30 °C, and b) p = 72 bar, T = 50 °C). The addition of methanol improved the extraction process by modulating the polarity of the extraction medium. Atomic absorption spectroscopy (AAS) is used to determine the concentration of metal ions before and after extraction. We use density functional theory (DFT) [model chemistry: using m-GGA/M11-L] to better understand the binding energy and geometry of bidentate ligands produced from dithizone and copper(II) or lead(II) ions. Furthermore, the developed complexes’ noncovalent interactions (NCI), bond order analysis, and electron localization function (ELF) provided valuable details about these molecules. To elucidate the bidentate complex extraction mechanism formed between the heavy metal ions and the dithizone ligand, molecular dynamic simulations at periodical boundary conditions were performed using the universal force field to obtain precise molecular descriptions.
___
- 1. Singh J, Kalamdhad AS. Effects of heavy metals on soil, plants, human health and aquatic life. International journal of Research in Chemistry and Environment 2011; 1 (2): 15–21.
- 2. Kersch C, Woerlee GF, Witkamp GJ. Supercritical fluid extraction of heavy metals from fly ash. Industrial & engineering chemistry research 2004; 43 (1): 190–196. doi: 10.1021/ie030114u
- 3. Ding X, Liu Q, Hou X, Fang T. Supercritical fluid extraction of metal chelate: a review. Critical Reviews in Analytical Chemistry 2017; 47 (2): 99–118. doi: 10.1080/10408347.2016.1225254
- 4. Smart NG, Carleson TE, Elshani S, Wang S, Wai CM. Extraction of toxic heavy metals using supercritical fluid carbon dioxide containing organophosphorus reagents. Industrial & Engineering Chemistry Research 1997; 36 (5): 1819–1826. doi: 10.1021/ie960384v
- 5. Lin Y, Liu C, Wu H, Yak HK, Wai CM. Supercritical fluid extraction of toxic heavy metals and uranium from acidic solutions with sulfurcontaining organophosphorus reagents. Industrial & engineering chemistry research 2003; 42 (7): 1400–1405. doi: 10.1021/IE020804I
- 6. Laintz KE, Wai CM, Yonker CR, Smith RD. Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide. Analytical Chemistry 1992; 64 (22): 2875–2878. doi: 10.1021/ac00046a039
- 7. Lin Y, Smart NG, Wai CM. Supercritical fluid extraction and chromatography of metal chelates and organometallic compounds. TrAC Trends in Analytical Chemistry 1995; 14 (3): 123–33. doi: 10.1016/0165-9936(95)94045-G
- 8. Lin Y, Wu H, Smart NG, Wai CM. Studies on in-situ chelation/supercritical fluid extraction of lanthanides and actinides usinga radiotracer technique. Separation Science and Technology 2001; 36 (5–6): 1149–1162. doi: 10.1081/SS-100103642
- 9. Halili J, Mele A, Arbneshi T, Halili A, Mazreku I et al. Preliminary studies for the supercritical $CO_2$ extraction of Cu (II) And Zn (II) ions by using Dithizone as chelating agent. Fresenius Environmental Bulletin 2015; 24 (12 A): 4492–4495.
- 10. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters 1996; 77 (18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
- 11. Berisha A, Combellas C, Kanoufi F, Decorse P, Oturan N et al. Some Theoretical and experimental insights on the mechanistic routes leading to the spontaneous grafting of gold surfaces by diazonium salts. Langmuir 2017; 33 (35): 8730-8738. doi: 10.1021/acs. langmuir.7b01371
- 12. Mardirossian N, Head-Gordon M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Molecular Physics. Taylor and Francis Ltd 2017; 115 (19): 2315–2372. doi: 10.1080/00268976.2017.1333644
- 13. Grimme S. Density functional theory with London dispersion corrections. Wiley Interdisciplinary Reviews. Computational Molecular Science 2011; 1 (2): 211–228. doi: 10.1002/wcms.30
- 14. Klamt A. The COSMO and COSMO-RS solvation models. Wiley Interdisciplinary Reviews. Computational Molecular Science 2018; 8 (1): e1338. doi: 10.1002/wcms.1338
- 15. Berisha A. Interactions between the aryldiazonium cations and graphene oxide: A DFT study. Journal of Chemistry 2019; doi: 10.1155/2019/5126071
- 16. Neese F. Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science 2018; 8 (1): e1327. doi: 10.1002/wcms.1327
- 17. Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics 2005; 7 (18): 3297–3305. doi: 10.1039/b508541a
- 18. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts 2008; 120 (1–3): 215–241. doi: 10.1007/s00214-007-0310-x
- 19. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics 2010; 132 (15): 154104. doi: 10.1063/1.3382344
- 20. Berisha A. The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne- A MD study. Open Chemistry 2019; 17 (1): 703–710. doi: 10.1515/chem-2019-0083
- 21. Berisha A. First principles details into the grafting of aryl radicals onto the free-standing and borophene/Ag (1 1 1) surfaces. Chemical Physics 2021; 544. doi: 10.1016/j.chemphys.2021.111124
- 22. Berisha A, Combellas C, Kanoufi F, Médard J, Decorse P et al. Alkyl-Modified Gold Surfaces: Characterization of the Au-C Bond. Langmuir 2018; 34 (38): 11264-11271. doi: 10.1021/acs.langmuir.8b01584
- 23. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry 2012; 33 (5): 580–592. doi: 10.1002/jcc.22885
- 24. Alija A, Gashi D, Plakaj R, Omaj A, Thaçi V et al. A theoretical and experimental study of the adsorptive removal of hexavalent chromium ions using graphene oxide as an adsorbent. Open Chemistry 2020; 18 (1): 936–942. doi: 10.1515/chem-2020-0148
- 25. Humphrey W, Dalke A, Schulten K. VMD. Visual molecular dynamics. Journal of Molecular Graphics 1996; 14 (1): 33–38. doi: 10.1016/0263-7855(96)00018-5
- 26. Rappé AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. Journal of the American Chemical Society 1992; 114 (25): 10024–10035. doi: 10.1021/ja00051a040
- 27. Evans DJ, Holian BL. The Nose-Hoover thermostat. The Journal of Chemical Physics 1985; 83 (8): 4069–4074. doi: 10.1063/1.449071
- 28. Berisha A. Experimental, Monte Carlo and molecular dynamic study on corrosion inhibition of mild steel by pyridine derivatives in aqueous perchloric acid. Electrochem 2020; 1 (2): 188–199. doi: 10.3390/electrochem1020013
- 29. Fischer H, Leopoldi G. Determination of small quantities of cadmium with dithizone. Mikrochim Acta 1937; 1:30.
- 30. Irving H, Cooke SJH, Woodger SC, Williams RJP. 395. Studies with dithizone. Part II. Dithizone as a monobasic acid. Journal of the Chemical Society (Resumed) 1949; 1847–1855.
- 31. Berisha A. The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne- A MD study. Open Chemistry 2019; 17 (1): 703-710. doi: 10.1515/chem-2019-0083
- 32. Berisha A. First principles details into the grafting of aryl radicals onto the free-standing and borophene/Ag(1 1 1) surfaces. Chemical Physics 2021; 544:111124. doi: 10.1016/j.chemphys.2021.111124
- 33. Yadav LS, Yadav JS. Bond order and valence: Analogy between the mayer and the eigenvalue treatments. Journal of Molecular Structure: THEOCHEM 1988; 165 (3–4): 289–295. doi: 10.1016/0166-1280(88)87026-X
- 34. Mayer I. Bond order and valence indices: A personal account. Journal of Computational Chemistry 2007; 28 (1): 204–221. doi: 10.1002/ jcc.20494
- 35. Stevenson J, Sorenson B, Subramaniam VH, Raiford J, Khlyabich PP et al. Mayer bond order as a metric of complexation effectiveness in lead halide perovskite solutions. Chemistry of Materials. American Chemical Society 2017; 29 (6): 2435–2444. doi: 10.1021/acs. chemmater.6b04327
- 36. Bridgeman AJ, Cavigliasso G, Ireland LR, Rothery J. The Mayer bond order as a tool in inorganic chemistry. Journal of the Chemical Society, Dalton Transactions 2001; 14: 2095–2108. doi: 10.1039/b102094n
- 37. Bhattacharyya A, Mohapatra M, Mohapatra PK, Gadly T, Ghosh SK et al. An insight into the complexation of trivalent americium vis-àvis lanthanides with Bis(1,2,4-triazinyl) bipyridine derivatives. European Journal of Inorganic Chemistry 2017; 4: 820–828. doi: 10.1002/ ejic.201600829