Acid-activated clay as heterogeneous and reusable catalyst for the synthesis of bioactive cyclic ketal derivatives

Acid-activated clay as heterogeneous and reusable catalyst for the synthesis of bioactive cyclic ketal derivatives

A new heterogeneous acid catalyst based on a natural resource, Tunisian clay (Clay-H0.5), has been preparedand characterized by FT-IR, FE-SEM, and powder X-ray diffraction (XRD), as well as chemical composition, cationexchange capacity, specific surface area, and pore volume. Acid treatment for 0.5 h enlarged the surface area from 78.24to 186.10 m2/g and pore volume (PV) from 0.186 to 0.281 cm3/g. The catalytic activity of this material was investigatedin ketalization reaction under mild solvent-free conditions. This achieved up to 92% isolated yield for only 10 wt.% of thecatalyst. This environmentally friendly method has advantages such as simple work-up procedure, avoidance of organicsolvents, and good performance in ketalization reactions. Importantly, the Clay-H0.5 catalyst showed good recyclabilitywhere insignificant activity loss was exhibited even after six runs. Synthesized cyclic ketals were tested for their possibleantileishmanial and antibacterial activities as well as antifungal activity. Biological screening showed that compound 11had important antileishmanial activity against both L. major and L. infantum, while compound 14 also had significantantibacterial activity against four gram-positive and two gram-negative bacteria, and antifungal activity against Candidaalbicans, with minimal inhibitory concentration values ranging from 15.62 µg/mL to 125 µg/mL.

___

  • 1. Yokoyama, N.; Kanazawa, A.; Kanaoka, S.; Aoshima, S. Macromolecules 2018, 51, 884-894.
  • 2. Tran, J.; Guégain, E.; Ibrahim, N.; Harrisson, S.; Nicolas, J. Polym. Chem. 2016, 7, 4427-4435.
  • 3. Küçük, H. B.; Yusufoglu, A.; Matarac, E.; Dösler, S. Molecules 2011, 16, 6806-6815.
  • 4. Bera, S.; Malik, L.; Bhat, B.; Carroll, S. S.; MacCoss, M.; Olsen, D. B.; Tomassini, J. E.; Eldrup, A. B. Bioorg. Med. Chem. Lett. 2003, 13, 4455-4458.
  • 5. Climent, M. J.; Velty, A.; Corma, A. Green Chem. 2002, 4, 565-569.
  • 6. Genta, M. T.; Villa, C.; Mariani, E.; Loupy, A.; Petit, A.; Rizzetto, R.; Mascarotti, A.; Morini, F.; Ferro, M. Int. J. Pharm. 2002, 231, 11-20.
  • 7. Delcourt, A.; Mathieu, G.; Baji, H.; Kimny, T.; Flammang, M.; Compagnon, P. L. Mycopathologia 1997, 137, 27-32.
  • 8. Chen, H.; Boudinot, F. D.; Chu, C. K.; Mcclure, H. M.; Schinazi, R. F. Antimicrob. Agents Chemother 1996, 40, 2332-2336.
  • 9. Liang, Y.; Sharon, A.; Grier, J. P.; Rapp, K. L.; Schinazi, R. F.; Chu, C. K. Bioorg. Med. Chem. 2009, 17, 1404-1409.
  • 10. Feng, J. Y.; Parker, W. B.; Krajewski, M. L.; Deville-Bonne, D.; Veron, M.; Krishnan, P.; Cheng, Y C.; BorrotoEsoda, K. Biochem. Pharmacol. 2004, 68, 1879-1888.
  • 11. Kumar, S.; Kaur, P.; Bernela, M.; Rani, R.; Thakur, R. International Journal of Biological Macromolecules 2016, 93, 988-994.
  • 12. Das, B. C.; Madhukumar, A. V.; Anguiano, J.; Kim, S.; Sinz, M.; Zvyaga, T. A.; Power, E. C.; Ganellin, C. R.; Mani, S. Bioorg. Med. Chem. Lett. 2008, 18, 3974-3977.
  • 13. Baji, H.; Flammang, M.; Kimny, T.; Gasquez, F.; Compagnon, P. L.; Delcourt, A. Eur. J. Med. Chem. 1995, 30, 617-626.
  • 14. Narayanasamy, J.; Pullagurla, M. R.; Sharon, A.; Wang, J.; Schinazi, R. F.; Chu, C. K. Antiviral Research 2007, 75, 198-209.
  • 15. Branalt, J.; Kvarnstrom, I. J. Org. Chem. 1996, 61, 3599-3603.
  • 16. Grove, K. L.; Guo, X.; Liu, S. H.; Gao, Z.; Chu, C. K.; Cheng, Y. C. Cancer Res. 1995, 55, 3008-3011.
  • 17. Kim, H. O.; Shanmuganathan, K.; Alves, A. J.; Jeong, L. S.; Beach, J. W.; Schinazi, R. F.; Chang, C. N.; Cheng, Y. C.; Chu, C. K. Tetrahedron Lett. 1992, 33, 6899-6902.
  • 18. Krompiec, S.; Penkala, M.; Szczubiałka, K.; Kowalska, E. Coordination Chemistry Reviews 2012, 256, 2057-2095.
  • 19. Yu, J.; Zhang, C. Synthesis 2009, 14, 2324-2328.
  • 20. Ono, F.; Takenaka, H.; Fujikawa, T.; Mori, M.; Sato, T. Synthesis 2009, 8, 1318-1322.
  • 21. Gopinath, R.; Haque, S. J.; Patel, B. K. J. Org. Chem. 2002, 67, 5842-5845.
  • 22. Zong, Y.; Yang, L.; Tang, S.; Li, L.; Wang, W.; Yuan, B.; Yang, G. Catalysts 2018, 8, 48-58.
  • 23. Fraile, J. M.; Saavedra, C. J. Catalysts 2017, 7, 393-407.
  • 24. Silveira, C. C.; Mendes, S. R.; Ziembowicz, F. I.; Lenardão, E. J.; Perin, G. J. Braz. Chem. Soc. 2010, 21, 371-374.
  • 25. Sun, S.; He, M.; Dai, Y.; Li, X.; Liu, Z.; Yao, L. Catalysts 2017, 7, 184-194.
  • 26. Barros, A. O.; Faísca, A. T.; Lachter, E. R.; Nascimento, R. S. V.; San, Gil, R. A. S. J. Braz. Chem. Soc. 2011, 22, 359-363.
  • 27. Shui-Jin, Y.; Xin-Xian, D.; Lan, H.; Ju-Tang, S. J Zhejiang Univ. Sci. 2005, 6B, 373-377.
  • 28. Thomas, B.; Sugunan, S. J. Porous Mater. 2006, 13, 99-106.
  • 29. Thomas, B.; Prathapan, S.; Sugunan, S. Microporous and Mesoporous Materials 2005, 80, 65-72.
  • 30. Xia, W.; Wang, F.; Mu, X.; Chen, K.; Takahashi, A.; Nakamura, I.; Fujitani, T. Catal. Commun. 2017, 90, 10-13.
  • 31. Lei, Z. Q.; Wei, L. L.; Wang, R. R.; Ma, G. F. Catal. Commun. 2008, 9, 2467-2469.
  • 32. Gupta, N.; Sonu-Kad, G. L.; Singh, J. Catal. Commun. 2007, 8, 1323-1328.
  • 33. Wang, B.; Gu, Y.; Song, G.; Yang, T.; Yang, L.; Suo, J. J. Mol. Catal. A Chem. 2005, 233, 121-126.
  • 34. Wang, X.; Ma, K.; Guo, L.; Tian, Y.; Cheng, Q.; Bai, X.; Huang, J.; Ding, T.; Li, X. Appl. Catal. A Gen. 2017, 540, 37-46.
  • 35. Kaur, N.; Kishore, D. J. Chem. Pharm. Res. 2012, 4, 991.
  • 36. Dasgupta, S.; Torok, B. Organic Preparations and Procedures International 2008, 40, 1-65.
  • 37. Krstic, L. J.; Sukdolak, S.; Solujic, S. J. Serb. Chem. Soc. 2002, 67, 325-329.
  • 38. Wang, N.; Hu, Y.; Zhang, Z. Applied Clay Science 2017, 150, 47-55.
  • 39. do Nascimento, A. R.; Alves, J. A. B. L. R.; de Freitas-Melo, M. A.; de Araújo-Melo, D. M.; de Souza, M. J. B.; Pedrosa, A. M. G. Materials Research 2015, 18, 283-287.
  • 40. Dar, B. A.; Bhatti, P.; Singh, A. P.; Lazar, A.; Sharma, P. R.; Sharma, M.; Singh, B. Appl. Catal. A Gen. 2013, 466, 60-67.
  • 41. Suresh, D.; Dhakshinamoorthy, A.; Kanagaraj, K.; Pitchumani, K. Tetrahedron Lett. 2013, 54, 6479-6484.
  • 42. Subramanian, T.; Pitchumani, K. Catal. Commun. 2012, 29, 109-113.
  • 43. Motokura, K.; Matsunaga, S.; Miyaji, A.; Sakamoto, Y.; Baba, T. Org. Lett. 2010, 12, 1508-1511.
  • 44. Kantevari, S.; Vuppalapati, S. V. N.; Bantu, R.; Nagarapu, L. J. Heterocycl. Chem. 2010, 47, 313-317.
  • 45. Mnasri, S.; Besbes, N.; Srasra, N. F.; Srasra, E. C. R. Chimie 2012, 15, 437-443.
  • 46. Besbes, N.; Jellali, H.; Pale, P.; Efrit, M. L.; Srasra, E. Phosphorus, Sulfur and Silicon 2010, 185, 883-889.
  • 47. Besbes, N.; Jellali, H.; Pale, P.; Srasra, E.; Efrit, M. L. C. R. Chimie 2010, 13, 358-364.
  • 48. Zheng, Z.; Han, B.; Wu, F.; Shi, T.; Liu, J.; Zhang, Y.; Hao, J. Tetrahedron 2016, 72, 7738-7743.
  • 49. Karimi, B.; Ghoreishi, N. M. Journal of Molecular Catalysis 2007, 277, 262-265.
  • 50. Santos, L. L.; Ruiz, V. R.; Sabater, M. J.; Corma, A. Tetrahedron 2008, 64, 7902-7909.
  • 51. Madabhushi, S.; Mallu, K. K. R.; Chinthala, N.; Beeram, C. R.; Vangipuram, V. S. Tetrahedron Lett. 2012, 53, 697-701.
  • 52. Smith, B. M.; Graha, A. E. Tetrahedron Lett. 2006, 47, 9317-9319.
  • 53. Ranu, B. C.; Jana, R.; Samanta, S. Adv. Synth. Catal. 2004, 346, 446-450.
  • 54. Stawicka, K.; Díaz-Afflvarez, A. E.; Calvino-Casilda, V.; Trejda, M.; Banffares, M. A.; Ziolek, M. J. Phys. Chem. 2016, 120, 16699-16711.
  • 55. Jin, Y.; Shi, J.; Zhang, F.; Zhong, Y.; Zhu, W. J. Mol. Cat. A Chem. 2014, 383, 167-171.
  • 56. Miao, J.; Wan, H.; Shao, Y.; Guan, G.; Xu, B. J. Mol. Catal. A Chem. 2011, 348, 77-82.
  • 57. Zhang, J.; Bao, S. H.; Yang, J. G. Chin. Sci. Bull. 2009, 54, 3958-3964.
  • 58. Zhang, F.; Xu, D. Q.; Liu, B. Y.; Luo, S. P.; Yang, W. L.; Xu, Z. Y. Chin. J. Catal. 2005, 26, 815-818.
  • 59. Hermida, L.; Amani, H.; Saeidi, S.; Abdullah, A. Z.; Mohamed, A. R. Rev Chem Eng. 2017, 34, 239-265.
  • 60. Mnasri, S.; Srasra, N. F. Infrared Physics & Technology 2013, 58, 15-20.
  • 61. Srasra, E.; Ayedi, M. T. Applied Clay Science 2000, 17, 71-84.
  • 62. Greene, T. W.; Wuts, P. G. M. Greene’s Protective Groups in Organic Synthesis, 4th Edition; John Wiley and Sons: New York, NY, USA, 2007.
  • 63. Wu, S. S.; Dai, W. L.; Yin, S. F.; Li, W. S.; Au, C. T. Catal. Lett. 2008, 124, 127-132.
  • 64. Jermy, B. R.; Pandurangan, A. Catal. Commun. 2006, 7, 921-925.
  • 65. Patel, S. M.; Chudasama, U. V.; Ganeshpure, P. A. J. Mol. Catal. A Chem. 2003, 194, 267-271.
  • 66. Essid, R.; Rahali, F. Z.; Msaada, K.; Sghair, I.; Hammami, M.; Bouratbine, A.; Aoun, K.; Limam, F. Industrial Crops and Products 2015, 77, 795-802.
  • 67. Ramdane, F.; Essid, R.; Mkadmini, K.; Hammami, M.; Fares, N.; Hadj-Mahammed, M.; El Ouassise, D.; Tabbene, O.; Limam, F.; Didi Ould Hadj, M. Process Biochem. 2017, 56, 186-192.
  • 68. Weninger, B.; Robledo, S.; Arango, G. J.; Deharo, E.; Arango, R.; Munoz, V.; Callapa, J.; Lobstein, A.; Anton, R. J. Ethnopharmacol. 2001, 78, 193-200.
  • 69. Celiktas, O. Y.; Kocabas, E. E. H.; Bedir, E.; Vardar Sukan, F.; Ozek, T.; Baser, K. H. C. Food Chem. 2007, 100, 553-559.
  • 70. Tay, B.; Giday, M.; Animt, A.; Seid, J. Asian Pac. J. Trop. Biomed. 2011, 1, 370-375.
  • 71. Santos, L. L.; Ruiz, V. R.; Sabater, M. J.; Corma, A. Tetrahedron 2008, 64, 7902-7909.
  • 72. Fei, H.; Rogow, D. L.; Oliver, S. R. J. J. Am. Chem. Soc. 2010, 132, 7202-7209.
  • 73. Gallucci, R. R.; Going, R. J. Org. Chem. 1981, 46, 2532-2638.
  • 74. Lukács, G.; Porcs-Makkay, M.; Komáromi, A.; Simig, G. Arkivoc 2008, 3, 17-24.
  • 75. McConville, M.; Blacker, J.; Xiao, J. Synthesis 2010, 2, 349-360.
  • 76. Detty, M. R.; Murray, B. J.; Smith, D. L.; Zumbulyadis, N. J. Am. Chem. Soc. 1983, 105, 875-882.
  • 77. Kondolff, I.; Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2006, 2006, 765-774.
  • 78. Tanemura, K.; Suzuki, T. Chem. Lett. 2015, 44, 797-799.
  • 79. Aoyama, T.; Suzuki, T.; Nagaoka, T.; Takido, T.; Kodomari, M. Synth. Commun. 2013, 43, 553-566.