A case study of antiaromaticity: carbomethoxy cyclopropenyl anion

A case study of antiaromaticity: carbomethoxy cyclopropenyl anion

The simplest ideas of antiaromaticity refer to regular monocyclic systems and the eigenfunctions of the HückelHamiltonian for 4n π electrons in such systems. The antiaromaticity is expressed in the energy penalty for such idealizedsystems relative to the Hückel energy for 2n noninteracting π pairs. Observed systems seldom achieve the regular planargeometry assumed in this picture, owing to their ability to ease the antiaromaticity penalty by departures from theregular geometry and also by export of the 4n π electrons’ charge to substituents. In this report we estimate numericalvalues for the stabilization derived from such departures from the structure and the charge distribution of the idealizedantiaromatic cyclopropenyl anion for a specific case, 3-dehydro-3-methyl carboxylate cyclopropenyl anion 1(–) usingthe thermochemical scheme CBSQB3 supplemented by CCSD(T) calculations. According to the isodesmic reaction, theanion 1(–) is destabilized by about 10–15 kcal/mol relative to the saturated 3-dehydro-3-methylcarboxylate cyclopropylanion 2(–). We propose that the anion relieves a portion of the antiaromatic destabilization by (a) pyramidalizationof one carbon of the ring, and (b) export of negative charge into the ester substituent. Both of these responses areexpressed in the equilibrium structure of the anion. In the course of the study we estimate the acidity of several relatedanions and the enthalpy of formation of their neutral conjugate acids, and describe the interconversion of 1 to thedehydrotriafulvalene anion 3(–) by reaction with CO2 .

___

  • 1. Glukhovtsev, M. J. Chem. Educ. 1997, 74, 132-136.
  • 2. Schleyer, P. v. R. (Guest Editor) Theme issue, Chem. Rev. 2001, 101, 5, 1115-1118.
  • 3. Schleyer, P. v. R. (Guest Editor) Theme issue, Chem. Rev. 2005, 105, 10, 3433-3435.
  • 4. Wheeler S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem. Soc. 2009, 131, 2547-2560.
  • 5. Wiberg, K. B. Angew. Chem. Int. Ed. Engl. 1986, 25, 312-322.
  • 6. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, USA, 2005, pp. 65-92.
  • 7. Wheland, G. W. Resonance Theory in Organic Chemistry; Wiley: New York, NY, USA, 1995.
  • 8. Breslow, R. Chem. Eng. News 1965, 43, 90-100.
  • 9. Breslow, R. Accounts Chem. Res. 1973, 6, 393-398.
  • 10. Cyrañski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R. J. Org. Chem. 2002, 67, 1333-1338.
  • 11. Shaik, S; Shurki, A.; Danovich, D.; Hiberty,P. C. Chem. Rev. 2001 101, 1501-1539.
  • 12. Pierrefixe, S. C. A. H.; Bickelhaupt, K. M. Chem Eur. J. 2007, 13, 6321-6328.
  • 13. Wiberg, K. B. Chem. Rev. 2001, 101, 1317-1331.
  • 14. Karadakov, P. B. J. Phys. Chem. 2008, 112, 12707-12713.
  • 15. Shiota, Y.; Kondo, M.; Yoshizawa, K. J. Chem. Phys. 2001, 115, 9243-9254.
  • 16. Glukhovtsev, M. N.; Laiter, S.; Pross, A. J. Phys. Chem. 1996, 100, 17801-17806.
  • 17. Merrill, G. N.; Kass, S. R. J. Am. Chem. Soc. 1997, 119, 12322-12337.
  • 18. Bachrach, S. M. Computational Organic Chemistry, 2nd edition; Wiley: Hoboken, NJ, USA, 2014.
  • 19. Sachs, R. K.; Kass, S. R. J. Am. Chem. Soc. 1994, 116, 783-784.
  • 20. Montgomery Jr, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822-2827.
  • 21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.2; Gaussian Inc.: Wallingford, CT, USA, 2009.
  • 22. Cramer, C. Essentials of Computational Chemistry Theories and Models; Wiley: New York, NY, USA, 2004, Table 8.4 and pp. 288-291.
  • 23. Curtiss, L.A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221-7230.
  • 24. Curtiss L. A.; Redfern, P. C.; Raghavachari, K., Pople, J. A. J. Chem. Phys. 1998, 109, 42, 7764-7776.
  • 25. Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695-712.
  • 26. NIST Computational Chemistry Comparison and Benchmark DataBase Release 19 (April 2018) Standard Reference Database 101 National Institute of Standards and Technology.
  • 27. da Silva, G; Bozzelli, J. W.; Sebbar, N.; Bockhorn, H. ChemPhysChem 2006, 7, 1119-1126.
  • 28. Ruscic, B.; Litorja, M.; Asher, R. L. J. Phys. Chem. A 1999, 103, 8625-8633.
  • 29. Benson, S. W. Thermochemical Kinetics; Wiley: New York, NY, USA, 1976.
  • 30. Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O’Neal, H. E.; Rodhers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69, 279-324.
  • 31. Verevkin, S. P.; Emel’yanenko, V. N.; Diky V.; Muzny, C. D.; Chirico, R. D.; Frenkel, M. J. Phys. Chem. Ref. Data 2013, 42, 033102-1-033102-33.
  • 32. Cohen, N. J. Phys. Chem. Ref. Data 1996, 25, 1411-1431.
  • 33. Hess, B. A.; Schaad, Jr., L. J.; Carsky, P. Tetrahedron Lett. 1984, 25, 4721-4724.
  • 34. Winkelhofer, G.; Janoschek, R.; Fratev, F.; Spitznagel, G. W.; Schleyer, P v. R. J. Am. Chem. Soc. 1985, 107, 332 -337.
  • 35. Li, W. K. J. Chem. Synop. 1988, 7, 220-221.
  • 36. Breslow, R. Angew. Chem. Int. Ed. 1968, 7, 565-570.
  • 37. Wasielewski, M. R.; Breslow, R. J. Am. Chem. Soc. 1976, 98, 4222-4229.
  • 38. Pancir, J.; Zahradnik, R. Tetrahedron 1976, 32, 2257-2260.
  • 39. Davidson, E. R.; Borden, W. T. J. Chem. Phys. 1977, 67, 2191-2195.
  • 40. Borden, W. T.; Davidson, E. R. Acc. Chem. Res. 1981, 14, 69-76.
  • 41. Borden, W. T.; Davidson, E. R.; Feller, D. J. Am. Chem. Soc. 1980, 102, 5302-5311.
  • 42. Jursic, B. S. J. Mol. Str. THEOCHEM 1999, 491, 33-40.
  • 43. Jursic, S. J. Mol. Str THEOCHEM 2000, 505, 233-240.
  • 44. Han, S.; Hare, M. C.; Kass, S. R. Int. J. Mass Spectr. 2000, 201, 101-108.
  • 45. Breslow, R.; Douek, M. J. Am. Chem. Soc. 1968, 90, 2698-2699.
  • 46. Breslow, R.; Cortes, D. A.; Jaun, B.; Mitchell, R. D. Tetrahedron Letters 1982, 23, 795-798.
  • 47. Yahya, N. M.; Khalil, S. M. Z. Naturforsch., A: Phys. Sci. 1992, 47, 768-774.
  • 48. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
  • 49. Weinhold, F. J. Comp. Chem. 2012, 33, 2363-2379.
  • 50. Kass, S. R. J. Org. Chem. 2013, 78, 7370-7372.
  • 51. Sindelka, M.; Moiseyev, N. J. Chem. Phys. 2008, 128, 061101-1-061101-4.
  • 52. Katriel, J. Theoret. Chim. Acta 1972, 23, 309-315.
  • 53. Katriel, J. Theoret. Chim. Acta 1972, 26, 163-170.
  • 54. Katriel, J. Phys. Rev. A 1972, 5, 1990-1992.