Investigation of the ideal composition of metal hexacyanocobaltates with high water oxidation catalytic activity

Investigation of the ideal composition of metal hexacyanocobaltates with high water oxidation catalytic activity

The electrocatalytic activities of Prussian blue analogues (PBAs) have recently received much attentiondue to their robustness and efficiency. Considering that PBAs with hexacyanocobaltate building block stand forwardamong other PBAs, a systematic study on a family of metal hexacyanocobaltates is presented in this study. Metal hexacyanocobaltates (M = Co, Mn, Ni, and Fe) were prepared, characterized, and electrochemical studies were performed.A series of mixed-metal cobalt-iron hexacyanocobaltates has also been studied to determine the ideal composition of ametal hexacyanocobaltate for electrocatalytic water oxidation process. The overall study clearly indicates that cobalthexacyanocobaltate exhibits the highest electrocatalytic activity among all.

___

  • 1. Ghobadi, T. G. U.; Ghobadi, A.; Ozbay, E.; Karadas, F. ChemPhotoChem 2018, 2, 161-182.
  • 2. Wang, M.; Chen, L.; Sun, L. Energy Environ. Sci. 2012, 5, 6763-6778.
  • 3. Concepcion, Javier J; Houser, Ralph L; Papanikolas, John M; Meyer, T. J.; Concepcion, J. J.; House, R. L.; Papanikolas, J. M.; Meyer, T. J. PNAS 2012, 109, 15560-15564.
  • 4. House, R. L.; Iha, N. Y. M.; Coppo, R. L.; Alibabaei, L.; Sherman, B. D.; Kang, P.; Brennaman, M. K.; Hoertz, P. G.; Meyer, T. J. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 32-45.
  • 5. Galán-Mascarós, J. R. ChemElectroChem 2015, 2, 37-50.
  • 6. Roger, I.; Shipman, M. A.; Symes, M. D. Nat. Rev. Chem. 2017, 1, 3.
  • 7. Kärkäs, M. D.; Åkermark, B. Dalt. Trans. 2016, 45, 14421-14461.
  • 8. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135, 16977-16987.
  • 9. Wasylenko, D. J.; Ganesamoorthy, C.; Borau-Garcia, J.; Berlinguette, C. P. Chem. Commun. (Camb). 2011, 47, 4249-4251.
  • 10. Dogutan, D. K.; Stoian, S. A.; McGuire, R.; Schwalbe, M.; Teets, T. S.; Nocera, D. G. J. Am. Chem. Soc. 2011, 133, 131-140.
  • 11. Alsaç, E. P.; Ulker, E.; Nune, S. V. K.; Karadas, F. Catal. Letters 2018, 148, 531-538.
  • 12. Nune, S. V. K.; Basaran, A. T.; Ülker, E.; Mishra, R.; Karadas, F. ChemCatChem 2017, 9, 300-307.
  • 13. Ressnig, D.; Shalom, M.; Patscheider, J.; Moré, R.; Evangelisti, F.; Antonietti, M.; Patzke, G. R. J. Mater. Chem. A 2015, 3, 5072-5082.
  • 14. Yamada, Y.; Oyama, K.; Gates, R.; Fukuzumi, S. Angew. Chemie - Int. Ed. 2015, 54, 5613-5617.
  • 15. Goberna-Ferro n, S.; Hernández, W. Y.; Rodríguez-García, B.; Galán-Mascarós, J. R. ACS Catal. 2014, 4, 1637- 1641.
  • 16. Pintado, S.; Goberna-Ferrón, S.; Escudero-Adán, E. C.; Galán-Mascarós, J. R. J. Am. Chem. Soc. 2013, 135, 13270-13273.
  • 17. Han, L.; Tang, P.; Reyes-Carmona, A.; Rodriguez-Garcia, B.; Torrens, M.; Morante, J. R.; Arbiol, J.; GalánMascarós, J. R. J. Am. Chem. Soc. 2016, 138, 16037-16045.
  • 18. Yamada, Y.; Oyama, K.; Suenobu, T.; Fukuzumi, S. Chem. Commun. 2017, 14, 224-232.
  • 19. Dunbar, K. R.; Heintz, R. A. Prog. Inorg. Chem. 1997, 45, 283-392
  • 20. Alsaç, E. P.; Ülker, E.; Nune, S. V. K.; Dede, Y.; Karadas, F. Chem. Eur. J. 2018, 24, 4856-4863.
  • 21. Nakamoto, K. In Handbook of Vibrational Spectroscopy; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2006.
  • 22. Aksoy, M.; Nune, S. V. K.; Karadas, F. Inorg. Chem. 2016, 55, 4301-4307.
  • 23. Ahn, H. S.; Tilley, T. D. Adv. Funct. Mater. 2013, 23, 227-233.
  • 24. Sun, Y.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P.; Chang, C. J. J. Am. Chem. Soc. 2013, 135, 17699-17702.
  • 25. Pintado, S.; Goberna-Ferrón, S.; Escudero-Adán, E. C.; Galán-Mascarós, J. R. J. Am. Chem. Soc. 2013, 135, 13270-13273.
  • 26. Li, T.-T.; Cao, S.; Yang, C.; Chen, Y.; Lv, X.-J.; Fu, W.-F. Inorg. Chem. 2015, 54, 3061-3067.
  • 27. Zaharieva, I.; Chernev, P.; Risch, M.; Klingan, K.; Kohlhoff, M.; Fischer, A.; Dau, H. Energy Environ. Sci. 2012, 5, 7081-7089.
  • 28. Indra, A.; Menezes, P. W.; Zaharieva, I.; Baktash, E.; Pfrommer, J.; Schwarze, M.; Dau, H.; Driess, M. Angew. Chemie Int. Ed. 2013, 52, 13206-13210.