A novel fluorimetric method for determination of pseudoephedrine hydrochloride in pharmaceutical formulations and blood serum

An inexpensive, simple, highly sensitive, and rapid fluorimetric method was developed for the analysis of pseudoephedrine hydrochloride at trace levels. The method is based on the recovery of fluorescence of Rh6G dye due to the interaction of pseudoephedrine hydrochloride with Rh6G-Au NPs complex, which results in the release of Rh6G from the complex and halting fluorescence resonance energy transfer between Rh6G and Au NPs. The intensity of fluorescence was directly proportional to the concentration of the analyte, which was used for its determination. Experimental factors were optimized by response-surface methodology. Under optimum conditions, the calibration curve was linear over the range of 15-150 ng mL$^{-1}$ and the limit of detection LOD was 10 ng mL$^{-1}$. Percent relative standard deviation n$=$ 5 for determination of 50 ng mL$^{-1}$pseudoephedrine hydrochloride was 3.74%. The method was successfully used for determining the analyte in human blood serum and in pharmaceutical formulations. The possible mechanistic description of the analytical reaction was proposed on the basis of TEM, FT-IR, and fluorescence spectra analysis.

___

  • 1. Shahid Ali M, Ghori M, Rafiuddin S, Roshanali Khatri A. A new hydrophilic interaction liquid chromatographic (HILIC) procedure for the simultaneous determination of pseudoephedrine hydrochloride (PSH), diphenhydramine hydrochloride (DPH) and dextromethorphan hydrobromide (DXH) in cough-cold formulations. Journal of Pharmaceutical and Biomedical Analysis 2007; 43 (1): 158-167. doi: 10.1016/j.jpba.2006.06.038
  • 2. Çağlar S,Ertürk Toker S.Simultaneous determination of desloratadine and pseudoephedrine sulfate in tablets by high performance liquid chromatography and derivative spectrophotometry. Reviews in Analytical Chemistry 2011; 30 (3-4): 145-151. doi: 10.1515/REVAC.2011.100
  • 3. Bicopoulos D. Drug Information for the Healthcare Professional.2nd ed. Castle Hill, Australia: Pharmaceutical Care Information Services, 2002.
  • 4. Giahi M,Arvand M, Mirzaei M, Bagherinia MA.Determination of pseudoephedrine hydrochloride in some pharmaceutical drugs by potentiometric membrane sensor based on pseudoephedrine–phosphotungstate ion pair.Analytical Letters 2009; 42 (6): 870-880. doi: 10.1080/00032710902722079
  • 5. ChenHW, FangZL. Combination of flow injection with capillary electrophoresis: Part 5. Automated preconcentration and determination of pseudoephedrine in human plasma. Analytica Chimica Acta 1999; 394 (1): 13-22. doi: 10.1016/S0003-2670(99)00264-0
  • 6. Yuwono M, Indrayanto G, Harsono T. Simultaneous determination of some active ingredients in cough and cold preparations by gas chromatography, and method validation. Journal of AOAC International 2005; 88 (4): 1093- 1098.
  • 7. Ming M,Fang F, Yulan S, Shuangjin C, Han L. Development and evaluation of an efficient HPLC/MS/MS method for the simultaneous determination of pseudoephedrine and cetirizine in human plasma: Application to Phase-I pharmacokinetic study. Journal of Chromatography B 2007; 846 (1-2): 105-111. doi: 10.1016/j.jchromb.2006.08.026
  • 8. Liu XM, Liu LH, Chen HL, Chen X. Separation and determination of four active components in medicinal preparations by flow injection-capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis 2007; 43 (5): 1700-1705. doi: 10.1016/j.jpba.2007.01.002
  • 9. Zhang J, Xie J, Liu J, Tian J, Chen X et al. Micellar electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine. Electrophoresis 2004; 25 (1): 74-79. doi: 10.1002/elps.200305643
  • 10. Riahi S, Hadiloo F, MilaniSMR, Davarkhah N, Ganjali MR et al. A new technique for spectrophotometric determination of pseudoephedrine and guaifenesin in syrup and synthetic mixture. Drug Testing and Analysis 2011; 3 (5): 319-324. doi: 10.1002/dta.235
  • 11. Youssef SH, Hegazy MA, Mohamed D, Badawey AM. Analysis of paracetamol, pseudoephedrine and cetirizine in Allercet Cold® capsules using spectrophotometric techniques. Chemistry Central Journal 2018; 12 (1): 67-80. doi: 10.1186/s13065-018-0436-z
  • 12. Altuntas TG, Zanooz, SS, Nebioglu, D. Quantitative determination of acrivastine and pseudoephedrine hydrochloride in pharmaceutical formulation by high performance liquid chromatography and derivative spectrophotometry. Journal of Pharmaceutical and Biomedical Analysis 1998; 17 (1): 103-109. doi: 10.1016/S0731-7085(97)00148-9
  • 13. Dijiba YK, Niemczyk TM. Determination of ephedrine hydrochloride in mixtures of ephedrine hydrochloride and pseudoephedrine hydrochloride using near infrared spectroscopy. Journal of Near Infrared Spectroscopy 2005; 13 (3): 155-160. doi: 10.1255/jnirs.468
  • 14. FindlayJWA, Warren JT, Hill JA, Welch RM. Stereospecific radioimmunoassays for d-pseudoephedrine in human plasma and their application to bioequivalency studies. Journal of Pharmaceutical Sciences 1981; 70 (6): 624-631. doi: 10.1002/jps.2600700613
  • 15. Abdel Hameed RM. Core-shell structured Ni−Co@Pt/C nanocomposite modified sensor for the voltammetric determination of pseudoephedrine HCl. New Journal of Chemistry2018; 42 (4): 2658-2668. doi:10.1039/c7nj04973k
  • 16. Shao G, Wang D, Wu F, Chen S, Luo X. Separation and determination of (I)-ephedrine and (d)-pseudoephedrine in plasma by high-performance liquid chromatography with fluorescence detection. Journal of Liquid Chromatography 1995; 18 (11): 2133-2145. doi: 10.1080/10826079508010260
  • 17. El-Didamony AM, Gouda AA. A novel spectrofluorimetric method for the assay of pseudoephedrine hydrochloride in pharmaceutical formulations via derivatization with 4-chloro-7-nitrobenzofurazan. Luminescence 2011; 26 (6): 510-517. doi: 10.1002/bio.1261
  • 18. Sun S, Leveque MJ.Electron-capture GLC determination of pseudoephedrine in serum. Journal of Pharmaceutical Sciences 1979; 68 (12): 1567-1568. doi: 10.1002/jps.2600681232
  • 19. Imani-Nabiyyi A, Sorouraddin MH. Determination of naphazoline hydrochloride in biological and pharmaceutical samples by a quantum dot-assisted chemiluminescence system using response-surface methodology. Luminescence 2014; 29 (8): 994-1002. doi: 10.1002/bio.2649
  • 20. Imani-Nabiyyi A, Sorouraddin MH, Amjadi M, Naseri A. Luminol/CdTe quantum dots/sodium periodate system in conjunction with response-surface methodology for chemiluminometric determination of some tetracyclines. Journal of Luminescence 2014; 151: 57-65. doi: 10.1016/j.jlumin.2014.01.075
  • 21. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008; 76 (5): 965-977. doi: 10.1016/j.talanta.2008.05.019
  • 22. Nguyen DT, Kim DJ, Kim KS. Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron 2011; 42 (3): 207-227. doi: 10.1016/j.micron.2010.09.008
  • 23. Zhang H, Wang L, Jiang W. Label free DNA detection based on gold nanoparticles quenching fluorescence of Rhodamine B. Talanta 2011; 85 (1):725-729. doi: 10.1016/j.talanta.2011.04.057
  • 24. Miller JN, Miller JC. Statistics and chemometrics for Analytical Chemistry.5th ed. Canada: Pearson Education Ltd., 2005.
  • 25. Helrich K(editor). Official Methods of Analysis.15th ed. Rockville, ML, USA: Association of Official Analytical Chemists, 1990.