Phosphorus-nitrogen compounds- (Part 50): correlations between structural parameters for cylophosphazene derivatives containing ferrocenyl pendant arm(s)

Phosphorus-nitrogen compounds- (Part 50): correlations between structural parameters for cylophosphazene derivatives containing ferrocenyl pendant arm(s)

The results of a systematic study of spiro-cyclotri/tetraphosphazenes with ferrocenyl pendant arm onthe basis of correlation between structural parameters were presented. The main parameters were obtained from Xray crystallography and ${}^{31}P$ NMR results in order to investigate the relationship between the δPspiro shift valuesand endocyclic and exocyclic NPN bond angles, and electron density transfer parameters. Structural parametersderived from 11 types of the ferrocenyl cyclophosphazene derivatives with 5- to 7-membered spiro-rings introducedto the literature from our research group were studied and compared with each other.

___

  • 1. Allcock HR. Recent advances in phosphazene (phosphonitrilic) chemistry. Chemical Reviews 1972; 4: 315-356.
  • 2. Chandrasekhar V, Chakraborr A. Phosphazenes. In: Allen DW, Loakes D, Tebby JC (editors). Organophosphorus Chemistry. Vol. 48. London, UK: Royal Sciety of Chemistry (RSC) Publishing, 2019, pp. 400-423.
  • 3. Kumar D, Singh J, Elias AJ. Chiral multidentate oxazoline ligands based on cyclophosphazene cores: synthesis, characterization and complexation studies. Dalton Transactions 2014; 43: 13899-13912.
  • 4. Chandrasekhar V, Krishnan V. Advances in the chemistry of cyclophosphazenes. Advances in Inorganic Chemistry 2002; 53: 159-211.
  • 5. Mutlu G, Elmas G, Kılıç Z, Hökelek T, Koç LY et al. Phosphorus-nitrogen compounds: Part 31. Syntheses, structural and stereogenic properties, in vitro cytotoxic and antimicrobial activities, DNA interactions of novel bicyclotetraphosphazenes containing bulky side group. Inorganica Chimica Acta 2015; 436: 69-81.
  • 6. Elmas G. The reactions of 2-trans-6-bis(4-?uorobenzyl)spirocyclotetraphosphazene with primary amines: Spectroscopic and crystallographic characterizations. Phosphorus, Sulfur, and Silicon and the Related Elements 2017; 192: 1224-1232.
  • 7. Stewart FF. Phosphazenes. In: Allen DW, Loakes D, Tebby JC (editors). Organophosphorus Chemistry. Vol. 44. London, UK: Royal Sciety of Chemistry (RSC) Publishing, 2015, pp. 397-430.
  • 8. Gleria, M, De Jaeger R (editors). Phosphazenes: A Worldwide Insight. New York, NY, USA: Nova Science Publishers, Inc., 2004.
  • 9. Başterzi NS, Bilge Koçak S, Okumuş A, Kılıç Z, Hökelek T et al. Syntheses, structural characterization and biological activities of spiro-ansa-spiro-cyclotriphosphazenes. New Journal of Chemistry 2015; 39: 8825-8839.
  • 10. Elmas G, Okumuş A, Kılıç Z, Çam M, Açık L et al. Phosphorus-nitrogen compounds. Part 40. The syntheses of (4-fluorobenzyl) pendant armed cyclotetraphosphazene derivatives: Spectroscopic, crystallographic and stereogenic properties, DNA interactions and antimicrobial activities. Inorganica Chimica Acta 2018; 476: 110-122.
  • 11. Kumar D, Singh N, Keshav K, Elias AJ. Ring-closing metathesis reactions of terminal alkene-derived cyclic phosphazenes. Inorganic Chemistry 2011; 50; 250-260.
  • 12. Nataro C, Myer CN, Cleaver WM, Allen CW. Synthesis and characterization of ferrocenylalcohol derivatives of hexachlorocyclotri phosphazene. X-ray crystal structure of N3P3 Cl 5 OCH2 C5 H4FeCp. Journal of Organometallic Chemistry 2001; 637-639: 284-290.
  • 13. Myer CM, Allen CW. N-(Ferrocenylmethyl)-N-methylaminocyclotri phosphazenes. Inorganic Chemistry 2002; 41: 60-66.
  • 14. Muralidharan K, Elias AJ. Preparation of the first examples of ansa-spiro substituted fluorophosphazenes and their structural studies: Analysis of C-H· · · F-P weak interactions in substituted fluorophosphazenes. Inorganic Chemistry 2003; 42: 7535-7543.
  • 15. Asmafiliz N. Syntheses of chiral phosphazenes with stereogenic centers: NMR behavior in the presence of a chiral solvating agent. Heteroatom Chemistry 2014; 25: 83-94.
  • 16. Binici A, Okumuş A, Elmas G, Kılıç Z, Ramazanog^lu N et al. Phosphorus-nitrogen compounds. Part 42. The comparative syntheses of 2-cis-4-ansa(N/O) and spiro(N/O) cyclotetraphosphazene derivatives: spectroscopic and crystallographic characterization, antituberculosis and cytotoxic activity studies. New Journal of Chemistry 2019; 43: 6856-6873.
  • 17. Xu M-J, Xu G-R, Leng Y, Li B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polymer Degradation and Stability 2016; 123: 105-114.
  • 18. Barbera J, Bardaj M, Jimnez J, Laguna A, Martnez J et al. Columnar mesomorphic organizations in cyclotriphosphazenes. Journal of American Chemical Society 2005; 127: 8994-9002.
  • 19. Jiménez J, Pintre I, Gascón E, Sánchez-Somolinos C, Alcalá R et al. Photoresponsive liquid-crystalline dendrimers based on a cyclotriphosphazene core. Macromolecular Chemistry and Physics 2014; 215: 1551-1562.
  • 20. Elmas G, Okumuş A, Kılıç Z, Çelik SP, Açık L. The spectroscopic and thermal properties, antibacterial and antifungal activity and DNA interactions of 4-(fluorobenzyl)spiro(N/O)cyclotriphosphazenium salts. Journal of the Turkish Chemical Society, Section A: Chemistry 2017; 4: 993-1016.
  • 21. Yıldırım K, Bilgin G, Yenilmez Çiftçi E, Tanrıverdi Eçik E, Şenkuytu Y et al. Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. European Journal of Medicinal Chemistry 2012; 52: 213- 220.
  • 22. Çetindere S, Tümay SO, Kılıç A, Durmuş M, Yeşilot S. Hexa-BODIPY linked-triazole based on a cyclotriphosphazene core as a highly selective and sensitive fluorescent sensor for Fe(2+) ions. Journal of Fluorescence 2016; 26: 1173-1181.
  • 23. Sazhin SV, Harrup MK, Gering KLJ. Characterization of low-flammability electrolytes for lithium-ion batteries. Journal of Power Sources 2011; 196: 3433-3438.
  • 24. Dagger T, Luerenbaum C, Schappacher FM, Winter M. Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements. Journal of Power Sources 2017; 342: 266-272.
  • 25. Nishimoto T, Yasuda T, Lee SY, Kondo R, Adachi C. A six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed-fluorescence OLEDs. Materials Horizons 2014; 1: 264-269.
  • 26. Barlow S, Marder S.R. Electronic and optical properties of conjugated group 8 metallocene derivatives. Chemical Communications 2000; 1555-1562.
  • 27. Barlow S, Bunting HE, Ringham C, Green JC, Bublitz GU et al. Studies of the electronic structure of metallocenebased second-order nonlinear optical dyes. Journal of the American Chemical Society 1999; 121: 3715-3723.
  • 28. Elmas G, Okumuş A, Koç LY, Soltanzade H, Kılıç Z et al. Phosphorus-nitrogen compounds. Part 29. Syntheses, crystal structures, spectroscopic and stereogenic properties, electrochemical investigations, antituberculosis, antimicrobial and cytotoxic activities and DNA interactions of ansa-spiro-ansa cyclotetraphosphazenes. European Journal of Medicinal Chemistry 2014; 87: 662-676.
  • 29. Chandrasekhar V, Andavan GTS, Nagendran S, Krishnan V, Azhakar R et al. Cyclophosphazene hydrazides as scaffolds for multi-ferrocenyl assemblies: synthesis, structure and electrochemistry. Organometallics 2003; 22: 976-986.
  • 30. Sengupta SA. Hexaferrocenyl cluster based on a cyclotriphosphazene core: synthesis and electrochemistry. Polyhedron 2003; 22: 1237-1240.
  • 31. Tümer Y, Koç LY, Asmafiliz N, Kılıç Z, Hökelek T et al. Phosphorus-nitrogen compounds: Part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. Journal of Biological Inorganic Chemistry 2015; 20: 165-178.
  • 32. İlter EE, Asmafiliz N, Kılıç Z, Açık L, Yavuz M et al. Phosphorus-nitrogen compounds: Part 19. Syntheses, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic monoferrocenylcyclotriphosphazenes. Polyhedron 2010; 29: 2933-2944.
  • 33. Asmafiliz N, Kılıç Z, Öztürk A, Hökelek T, Koç LY et al. Phosphorus-nitrogen compounds. 18. Syntheses, stereogenic properties, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic mono- and bisferrocenylphosphazene derivatives. Inorganic Chemistry 2009; 48: 10102-10116.
  • 34. Okumuş A, Elmas G, Cemaloğlu R, Aydın B, Binici A et al. Phosphorus-nitrogen compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, and antituberculosis, antimicrobial and cytotoxic activities of monoferrocenyl-spirocyclotetraphosphazenes. New Journal of Chemistry 2016; 40: 5588-5603.
  • 35. Asmafiliz N, Kılıç Z, Hökelek T, Koç LY, Açık L et al. Phosphorus-nitrogen compounds: Part 26. Syntheses, spectroscopic and structural investigations, biological and cytotoxic activities, and DNA interactions of mono and bisferrocenylspirocyclotriphosphazenes. Inorganica Chimica Acta 2013; 400: 250-261.
  • 36. Tümer Y, Asmafiliz N, Zeyrek CT, Kılıç Z, Açık L et al. Syntheses, spectroscopic and crystallographic characterizations of cis- and trans-dispirocyclic ferrocenylphosphazenes: molecular dockings, cytotoxic and antimicrobial activities. New Journal of Chemistry 2018; 42: 1740-1756.
  • 37. Tümer Y, Asmafiliz N, Kılıç Z, Hökelek T, Koç LY et al. Phosphorus-nitrogen compounds: Part 28. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing vanillinato and pendant ferrocenyl groups. Journal of Molecular Structure 2013; 1049: 112-124.
  • 38. Elmas G, Okumuş A, Cemaloğlu R, Kılıç Z, Çelik SP et al. Phosphorus-nitrogen compounds. Part 38. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms. Journal of Organometallic Chemistry 2017; 853: 93-106.
  • 39. Tümer Y, Asmafiliz N, Arslan G, Kılıç Z, Hökelek T. Phosphorus-nitrogen compounds: Part 45. Vanillinatosubstituted cis and trans-bisferrocenyldispirocyclotriphosphazenes: Syntheses, spectroscopic and crystallographic characterizations. Journal of Molecular Structure 2019; 1181: 235-243.
  • 40. Asmafiliz N, Civan M, Özben A, Kılıç Z, Ramazanoğlu N et al. Phosphorus-nitrogen compounds. Part 39. Syntheses and Langmuir-Blodgett thin films and antimicrobial activities of N/N and N/O spirocyclotriphosphazenes with monoferrocenyl pendant arm. Applied Organometallic Chemistry 2018; 32(4): e4223.
  • 41. Asmafiliz N, Civan M, Uzunalioğlu N, Özben A, Kılıç Z et al. Phosphorus–nitrogen compounds. Part 41. Ferrocenyl pendant-armed spirocyclopiperidinocyclotriphosphazatrienes: Langmuir–Blodgett thin films and biological activity studies. Journal of Chemical Sciences 2018; 130: 152.
  • 42. Shaw RA. The Phosphazenes-Structural parameters and their relationships to physical and chemical properties. Phosphorus, Sulfur, and Silicon and the Related Elements 1986; 28: 99-128.
  • 43. Pektaş S, Bilge Koçak S, Başterzi NS, Kılıç Z, Zeyrek CT et al. spiro-Cylotriphosphazenes containing 4-hydroxypheny lethyl pendant arm: Syntheses, structural characterization and DNA interaction study. Inorganica Chimica Acta 2018; 474: 51-65.
  • 44. Bilge Koçak S, Koçoğlu S, Okumuş A, Kılıç Z, Öztürk A et al. Syntheses, spectroscopic properties, crystal structures, biological activities, and DNA interactions of heterocyclic amine substituted spiro-ansa-spiro- and spiro-bino-spiro-phosphazenes. Inorganica Chimica Acta 2013; 406: 160-170.
  • 45. Bilge S, Demiriz Ş, Okumuş A, Kılıç Z, Tercan B et al. Phosphorus-nitrogen compounds: Part 13. Syntheses, crystal structures, spectroscopic, stereogenic and anisochronic properties of novel spiro-ansa-spiro-, spiro-bino-spiro- and spiro-crypta phosphazene derivatives. Inorganic Chemistry 2006; 45: 8755-8767.
  • 46. İlter EE, Asmafiliz N, Işıklan M, Kılıç Z, Çaylak N et al. Phosphorus-nitrogen compounds: Part 14. Synthesis, stereogenism and structural investigations of novel N/O spirocyclic phosphazene derivatives. Inorganic Chemistry 2007; 46: 9931-9944.
  • 47. Okumuş A, Bilge S, Kılıç Z, Öztürk A, Hökelek T et al. Phosphorus-nitrogen compounds. Part 20: Fully substituted spiro-cyclophosphazenic lariat (PNP-pivot) ether derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2010; 76; 401-409.
  • 48. Bilge S, Özgüç B, Safran S, Demiriz Ş, İşler H et al. Phosphorus-nitrogen compounds: Novel fully substituted spiro-cyclophosphazenic lariat (PNP-pivot) ether derivatives. Structures of 4,4,6,6-tetrapyrrolidino-2,2-[3-oxa-1,5- pentane dioxy bis(2-phenylamino)cyclo-2λ 5 ,4λ 5 ,6λ 5 -triphosphazene and 4,4,6,6-tetrapyrrolidino-2,2-[1,2-xylylene dioxy bis(2-phenylamino)cyclo[2λ 5 ,4λ 5 ,6λ 5 ]-triphosphazene. Part XI. Journal of Molecular Structure 2005; 748: 101-109.
  • 49. Kılıç Z, Okumuş A, Demiriz Ş, Bilge S, Öztürk A et al. Phosphorus-nitrogen compounds: Part 16. Synthesis, stereogenism, anisochronism and the relationship between 31P NMR spectral and crystallographic data of monotopic spiro-crypta phosphazene derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2009; 65: 269-286.
  • 50. Asmafiliz N, İlter EE, Işıklan M, Kılıç Z, Tercan B et al. Novel phosphazene derivetives. Synthesis, anisochronism and structural investigations of mono- and ditopic spiro-crypta phosphazenes. Journal of Molecular Structure 2007; 832: 172-183.
  • 51. Asmafiliz N, İlter EE, Kılıç Z, Hökelek T, Şahin E. Phosphorus-nitrogen compounds: Part 15. Synthesis, anisochronism and the relationship between crystallographic and spectral data of monotopic spiro-crypta phosphazenes. Journal of Chemical Sciences 2008; 120: 363-376.
  • 52. Asmafiliz N, Kılıç Z, Öztürk A, Süzen Y, Hökelek T et al. Phosphorus-nitrogen compounds: Part 25. Syntheses, spectroscopic, structural and electrochemical investigations, antimicrobial activities, and DNA interactions of ferrocenyldiaminocyclotriphosphazenes. Phosphorus, Sulfur, and Silicon and the Related Elements 2013; 188: 1723- 1742.
  • 53. Schuhmann W, Ohara TJ, Schmidt H-L, Heller A. Electron transfer between glucose oxidase and electrodes via redox mediators bound with flexible chains to the enzyme surface. Journal of the American Chemical Society 1991; 113: 1394-1397.
  • 54. Neuse EW, Meirim MG, Blom NF. Metallocene-containing platinum complexes as potential antitumor agents. 1. Dichloro(1,6-diferrocenyl-2,5-diazahexane)platinum(11) and c/s-dichlorobis(1-ferrocenylethylamine)platinum(II). Organometallics 1988; 7: 2562-2565.
  • 55. Bullen GJ. An improved determination of the crystal structure of hexachlorocyclotriphosphazene (phosphonitrilic chloride). Journal of the Chemical Society A: Inorganic, Physical, Theoretical 1971; 56: 1450-1453.
  • 56. Çil E, Arslan M, Görgülü AO. Synthesis and characterization of alkyl- and acyl-substituted oxime-phosphazenes. Canadian Journal of Chemistry 2005; 83: 2039-2045.
  • 57. Wagner AJ, Vos A. The crystal structure of compounds with (N–P) n rings. IV. The stable modification (T form) of tetrameric phosphonitrilic chloride, N4P4 Cl 8 . Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 1968; 24: 707-713.
  • 58. İbişoğlu H, Çiftçi Yenilmez G, Kılıç A, Tanrıverdi E, Ün İ et al. Formation of novel spiro, spiroansa and dispiroansa derivatives of cyclotetraphosphazene from the reactions of polyfunctional amines with octachlorocyclotetraphosphazatetraene. Journal of Chemical Sciences 2009; 121: 125-135.
  • 59. Chaplin AB, Harrison JA, Dyson PJ. Revisiting the electronic structure of phosphazenes. Inorganic Chemistry 2005; 44: 8407-8417