Synthesis and effect of substituent position, metal type on the electrochemical properties of (3-morpholin-4-ylpropoxy) groups substituted cobalt, manganese phthalocyanines

Synthesis and effect of substituent position, metal type on the electrochemical properties of (3-morpholin-4-ylpropoxy) groups substituted cobalt, manganese phthalocyanines

In this work, 4-(3-morpholin-4-ylpropoxy)phthalonitrile 2, 3-(3-morpholin-4-ylpropoxy)phthalonitrile 3,Co(II)Pc and Mn(III)Pcs containing (3-morpholin-4-ylpropoxy) groups at peripheral and nonperipheral positions weresynthesized. Phthalonitrile derivatives (2 and 3), Co(II)Pc and Mn(III)Pcs (2a, 2b, 3a, 3b) were characterizedby using FT-IR, NMR (only for 2 and 3), mass and UV–Vis (except 2 and 3) spectral data techniques. Also,electrochemistry of (3-morpholin-4-ylpropoxy) group substituted Co(II)Pc and Mn(III)Pcs were inspected by using cyclicvoltammetry. Electrochemical studies show that (3-morpholin-4-ylpropoxy) group substituted Co(II)Pc and Mn(III)Pcselectropolymerized on the Pt working electrode.

___

  • 1. Yildirim Ö , Sevim AM, Gül A. Novel water-soluble metallophthalocyanines supported on cotton fabric. Coloration Technology 2012; 128: 236-243.
  • 2. Olgac R, Soganci T, Baygu Y, Gök Y, Ak M. Zinc(II) phthalocyanine fused in peripheral positions octa-substituted with alkyl linked carbazole: Synthesis, electropolymerization and its electro-optic and biosensor applications. Biosensors Bioelectronics 2017; 98: 202-209.
  • 3. Guillaud G, Simon J, Germain JP. Metallophthalocyanines: Gas sensors, resistors and field effect transistors. Coordination Chemistry Reviews 1998; 178-180: 1433-1484.
  • 4. Amitha GS, Ameen MY, Reddy VS, Vasudevan S. Synthesis of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine and its application in bulk hetero junction solar cells. Journal of Molecular Structure 2019; 1185: 425-431.
  • 5. Yıldız B, Güzel E, Menges N, Şişman İ, Şener MK. Pyrazole-3-carboxylic acid as a new anchoring group for phthalocyanine-sensitized solar cells. Solar Energy 2018; 174: 527-536.
  • 6. Platonova YB, Volov AN, Tomilova LG. Palladium(II) octaalkoxy- and octaphenoxyphthalocyanines: Synthesis and evaluation as catalysts in the Sonogashira reaction. Journal of Catalysis 2019; 373: 222-227.
  • 7. Bıyıklıoğlu Z, Arslan T, Alawainati FA, Manaa H, Jaffar A et al. Comparative nonlinear optics and optical limiting properties of metallophthalocyanines. Inorganica Chimica Acta 2019; 486: 345-351.
  • 8. Kawano SI, Yamada Y, Rongfang S, Ishihara Y, Tanaka K. Liquid-crystalline phthalocyanine with short intercolumnar distance and variation of the liquid crystallinity induced by square-planar metal ions. Chemistry Letters 2018; 47: 1262-1264.
  • 9. Kamiloğlu AA, Acar İ, Bıyıklıoğlu Z, Saka ET. Peripherally tetra-{2-(2,3,5,6-tetrafluorophenoxy)ethoxy}substituted cobalt(II), iron(II) metallophthalocyanines: Synthesis and their electrochemical, catalytic activity studies. Journal of Organometallic Chemistry 2017; 828: 58-67.
  • 10. Bıyıklıoğlu Z, Saka ET, Gökçe S, Kantekin H. Synthesis, characterization and investigation of homogeneous oxidation activities of peripherally tetra-substituted Co(II) and Fe(II) phthalocyanines: Oxidation of cyclohexene. Journal of Molecular Catalysis A Chemical 2013; 378: 156-163.
  • 11. Mohammed I, Oluwole DO, Nemakal M, Sannegowda LK, Nyokong T. Investigation of novel substituted zinc and aluminium phthalocyanines for photodynamic therapy of epithelial breast cancer. Dyes and Pigments 2019; 170: 107592-107592.
  • 12. Günsel A, Güzel E, Bilgiçli AT, Atmaca GY, Erdoğmuş A et al. Synthesis and investigation of photophysicochemical properties of novel ketone-substituted gallium (III) and indium (III) phthalocyanines with high singlet oxygen yield for photodynamic therapy. Journal of Luminescence 2017; 192: 888-892.
  • 13. Shumba M, Nyokong Y. Electrocatalytic activity of nanocomposites of sulphur doped graphene oxide and nanosized cobalt phthalocyanines. Electroanalysis 2016; 28: 3009-3018.
  • 14. Ipek Y, Dinçer H, Koca A. Electrode modification based on ”click electrochemistry” between terminal-alkynyl substituted cobalt phthalocyanine and 4-azidoaniline. Sensors and Actuators B Chemical 2014; 193: 830-837.
  • 15. Nemakal M, Aralekallu S, Mohammed I, Swamy S, Sannegowda LK. Electropolymerized octabenzimidazole phthalocyanine as an amperometric sensor for hydrazine. Journal of Electroanalytical Chemistry 2019; 839: 238-246.
  • 16. Kobak RZU, Akyüz D, Koca A. Substituent effects to the electrochromic behaviors of electropolymerized metallophthalocyanine thin films. Journal of Solid State Electrochemistry 2016; 20: 1311-1321.
  • 17. Zielinska A, Takai A, Sakurai H, Saeki A, Leonowicz M et al. Spin-active, electrochromic, solvent-free molecular liquid based on double-decker lutetium phthalocyanine bearing long branched alkyl chains. Chemistry: An Asian Journal 2018; 13: 770-774.
  • 18. Ballarin B, Gazzano M, Cisneros JL, Tonelli D, Seeber R. Electrocatalytic activity of cobalt phthalocyanine stabilized by different matrixes. Analytical and Bioanalytical Chemistry 2002; 374: 891-897.
  • 19. Çakır V, Kantekin H, Bıyıklıoğlu Z, Koca A. Synthesis, electrochemistry, spectroelectrochemistry and electropolymerization of metal-free and metallophthalocyanines. Polyhedron 2014; 81: 525-533.
  • 20. Keleş T, Akyüz D, Bıyıklıoğlu Z, Koca A. Electropolymerization of metallophthalocyanines carrying redox active metal centers and their electrochemical pesticide sensing application. Electroanalysis 2017; 29: 2125-2137.
  • 21. Sehlotho N, Durmuş M, Ahsen V, Nyokong T. The synthesis and electrochemical behaviour of water soluble manganese phthalocyanines: Anion radical versus Mn(I) species. Inorganic Chemistry Communications 2008; 11: 479-483.
  • 22. Tuncer S, Kaya K, Özçeşmeci İ, Burat AK. Non-peripherally tetrasubstituted phthalocyanines: Synthesis, characterization and, photophysical investigation. Journal of Organometallic Chemistry 2017; 827: 78-85.
  • 23. Zheng BY, Ke MR, Lan WL, Hou L, Guo J et al. Mono- and tetra-substituted zinc(II) phthalocyanines containingmorpholinyl moieties: Synthesis, antifungal photodynamic activities,and structure-activity relationships. European Journal of Medicinal Chemistry 2016; 114: 380-389.
  • 24. Keleş T, Bıyıklıoğlu Z, Gültekin E, Bekircan O. Synthesis and electrochemical properties of peripheral, nonperipheral tetra [2-(3,5-diphenyl-1H-1,2,4-triazol-1-yl)ethoxy] substituted cobalt(II), manganese(III) phthalocyanines. Inorganica Chimica Acta 2019; 487: 201-207.
  • 25. Akinbulu IA, Nyokong T. The effects of point of substitution on the electrochemical behavior of new manganese phthalocyanines, tetra-substituted with diethylaminoethanethiol. Inorganica Chimica Acta 2010; 363: 3229-3237.
  • 26. Çakır D, Arslan T, Bıyıklıoğlu Z. An effect of the substituent position and metal type on the electropolymerization properties of chalcone substituted metallophthalocyanines. Dalton Transactions 2015; 44: 20859-20866.
  • 27. Nas A, Bıyıklıoğlu Z, FandaklıS, SarkıG, Yalazan H et al. Tetra(3-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl)phenoxy) substituted cobalt, iron and manganese phthalocyanines: Synthesis and electrochemical analysis. Inorganica Chimica Acta 2017; 466: 86-92.
  • 28. Orman EB, Altun S, Odabaş Z, Altındal A, Özkaya AR. Electrochemical, electrocatalytic dioxygen reducing and dielectric relaxation properties of non-peripheral tetra-2,3-dihydro-1H-inden-5-yloxy substituted phthalocyanines. Journal of the Electrochemical Society 2015; 162: H825-H840.
  • 29. Demirbaş Ü, Akyüz D, Bayrak R, Barut B, Koca A et al. Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties of peripherally and non-peripherally tetra 2-methyl-5-benzothiazole substituted nickel(II), copper(II) and cobalt(II) phthalocyanines. Synthetic Metals 2017; 231: 112-119.
  • 30. Çakır D, Bekircan O, Biyiklioglu Z. 1,2,4-Triazole-substituted metallophthalocyanines carrying redox active cobalt(II), manganese(III), titanium(IV) center and their electrochemical studies. Synthetic Metals 2015; 201: 18-24.