One-step synthesis of hierarchical [B]-ZSM-5 using cetyltrimethylammonium bromide as mesoporogen

One-step synthesis of hierarchical [B]-ZSM-5 using cetyltrimethylammonium bromide as mesoporogen

One-step facile synthesis of boron containing ZSM-5 microspheres is developed using 1,6-diaminohexane asthe structure-directing agent and cetyltrimethylammonium bromide as the mesoporogen. High boron incorporation upto Si/B ratio of 38 is achieved and evidenced by the stretching vibrations of B–O–Si at 667 $cm^{-1}$and 917 $cm^{-1}$ usingFourier-transform infrared spectra. The morphology of the crystals resembles berry-like spheres with sizes approximately15 µm, which is composed of aggregated nanocrystals having sizes around 450 nm, is observed using scanning electronmicroscopy. The textural properties, i.e. the surface areas and pore volumes are investigated using $N_2$ adsorption at–196 °C. t-plot micropore volume of 0.11 $cm^3$/g and mesopore volume of 0.14 $cm^3$/g are obtained applying this synthesismethod for mesopores having pore diameters within the range of 2–10 nm.

___

  • 1. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews 1997; 97 (6): 2373-2419. doi: 10.1021/CR960406N
  • 2. Hartmann M, Machoke AG, Schwieger W. Catalytic test reactions for the evaluation of hierarchical zeolites. Chemical Society Reviews 2016; 45 (12): 3313-3330. doi: 10.1039/c5cs00935a
  • 3. Townsend RP, Coker EN. Ion exchange in zeolites. In: Bekkum H van, Flanigen EM, Jacobs PA, Jansen JC (editors). Studies in Surface Science and Catalysis. Elsevier, 2001, pp. 467-524. doi: 10.1016/s0167-2991(01)80253-6
  • 4. Lobo RF. Intermolecular Forces in Zeolite Adsorption and Catalysis. In: Valtchev V, Mintova S, Tsapatsis M (editors). Ordered Porous Solids: Recent Advances and Prospects. Amsterdam: Elsevier, 2009, pp. 239-261. doi: 10.1016/B978-0-444-53189-6.00009-3
  • 5. Garcia Vargas N, Stevenson S, Shantz DF. Simultaneous isomorphous incorporation of boron and germanium in MFI zeolites. Microporous and Mesoporous Materials 2013; 170: 131-140. doi: 10.1016/j.micromeso.2012.11.015
  • 6. Přech J, Vitvarová D, Lupínková L, Kubů M, Čejka J. Titanium impregnated borosilicate zeolites for epoxidation catalysis. Microporous and Mesoporous Materials 2015; 212: 28-34. doi: 10.1016/j.micromeso.2015.03.015
  • 7. Kawagoe H, Komura K, Kim JH, Seo G, Sugi Y. Preparation of [Fe]-SSZ-24 through the isomorphous substitution of [B]-SSZ-24 with iron, and its catalytic properties in the isopropylation of biphenyl. Journal of Molecular Catalysis A: Chemical 2011; 350 (1-2): 1-8. doi: 10.1016/j.molcata.2011.08.027
  • 8. Millini R, Perego G, Bellussi G. Synthesis and characterization of boron-containing molecular sieves. Topics in Catalysis 1999; 9 (1/2): 13-34. doi: 10.1023/A:1019198119365
  • 9. Hu Z, Zhang H, Wang L, Zhang H, Zhang Y et al. Highly stable boron-modified hierarchical nanocrystalline ZSM5 zeolite for the methanol to propylene reaction. Catalysis Science and Technology 2014; 4 (9): 2891-2895. doi: 10.1039/c4cy00376d
  • 10. Millini R, Carluccio LC, Carati A, Parker WO. Synthesis and characterization of borosilicates with the EUO framework topology. Microporous and Mesoporous Materials 2001; 46 (2-3): 191-201. doi: 10.1016/S1387-1811(01)00284- 0
  • 11. Regli L, Bordiga S, Lamberti C, Lillerud KP, Zones SI et al. Effect of boron substitution in chabazite framework: IR studies on the acidity properties and reactivity towards methanol. Journal of Physical Chemistry C 2007; 111 (7): 2992-2999. doi: 10.1021/jp064048w
  • 12. Tong HTT, Koller H. Control of Al for B framework substitution in zeolite Beta by counterions. Microporous and Mesoporous Materials 2012; 148 (1): 80-87. doi: 10.1016/j.micromeso.2011.07.021
  • 13. Vitvarová D, Kurfiřtová L, Kubů M, Žilková N. Catalytic applications and FTIR investigation of zeolite SSZ-33 after isomorphous substitution. Microporous and Mesoporous Materials 2014; 194: 174-182. doi: 10.1016/j.micromeso.2014.04.007
  • 14. Perego G, Bellussi G, Millini R, Alberti A, Zanardi S. B-containing molecular sieves crystallized in the presence of ethylenediamine. Part I: crystal structure of as-synthesized B-FER Giovanni. Microporous and Mesoporous Materials 2002; 56 (2): 193-202. doi: 10.1016/s1387-1811(02)00628-5
  • 15. Hoelderich W. New Developments in Zeolite Science and Technology. Vol 28. 1st ed. (Murakami Y, A.lijima, Ward JW, editors.). Amsterdam, the Netherlands: Elsevier; 1986. doi: 10.1016/0378-3820(88)90078-1
  • 16. Taramasso M, Manara G, Fattore V, Notari B. GB Patent 2024790. 1990.
  • 17. Röseler J, Heitmann G, Hölderich WF. Vapour-phase Beckmann rearrangement using B-MFI zeolites. Applied Catalysis A: General 1996; 144 (1-2): 319-333. doi: 10.1016/0926-860X(96)00127-5
  • 18. Heitmann GP, Dahlhoff G, Niederer JPM, Hölderich WF. Active sites of a [B]-ZSM-5 zeolite catalyst for the Beckmann rearrangement of cyclohexanone oxime to caprolactam. Journal of Catalysis 2000; 194 (1): 122-129. doi: 10.1006/jcat.2000.2928
  • 19. Lezcano-González I, Vidal-Moya A, Boronat M, Blasco T, Corma A. Modelling active sites for the Beckmann rearrangement reaction in boron-containing zeolites and their interaction with probe molecules. Physical Chemistry Chemical Physics 2010; 12 (24): 6396-6403. doi: 10.1039/c002146f
  • 20. Brabec L, Nováková J, Kubelková L. Catalytic conversion of oxygen containing cyclic compounds. Part I. Cyclohexanol conversion over H[Al]ZSM-5 and H[B]ZSM-5. Journal of Molecular Catalysis 1994; 94 (1): 117-130. doi: 10.1016/0304-5102(94)87033-0
  • 21. Qiao Q, Wang R, Gou M, Yang X. Catalytic performance of boron and aluminium incorporated ZSM-5 zeolites for isomerization of styrene oxide to phenylacetaldehyde. Microporous and Mesoporous Materials 2014; 195: 250-257. doi: 10.1016/j.micromeso.2014.04.042
  • 22. Müller S, Liu Y, Vishnuvarthan M, Sun X, van Veen AC et al. Coke formation and deactivation pathways on HZSM-5 in the conversion of methanol to olefins. Journal of Catalysis 2015; 325: 48-59. doi: 10.1016/j.jcat.2015.02.013
  • 23. Ivanova S, Lebrun C, Vanhaecke E, Pham-Huu C, Louis B. Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction. Journal of Catalysis 2009; 265 (1): 1-7. doi: 10.1016/j.jcat.2009.03.016
  • 24. Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Microporous and Mesoporous Materials 2015; 203 (C): 41-53. doi: 10.1016/j.micromeso.2014.10.024
  • 25. Mei C, Wen P, Liu Z, Liu H, Wang Y et al. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. Journal of Catalysis 2008; 258 (1): 243-249. doi: 10.1016/j.jcat.2008.06.019
  • 26. Lobo RF, Davis ME. Synthesis and characterization of pure-silica and boron-substituted SSZ-24 using N(16) methylsparteinium bromide as structure-directing agent. Microporous Materials 1994; 3 (1-2): 61-69. doi: 10.1016/0927-6513(94)00003-4
  • 27. Wang JG, Wang H, Yokoi T, Tatsumi T. Synthesis of Ti-containing extra-large-pore zeolites of Ti-CIT-5 and Ti-SSZ-53 and their catalytic applications. Microporous and Mesoporous Materials 2019; 276: 207-212. doi: 10.1016/j.micromeso.2018.10.003
  • 28. Mi S, Wei T, Sun J, Liu P, Li X et al. Catalytic function of boron to creating interconnected mesoporosity in microporous Y zeolites and its high performance in hydrocarbon cracking. Journal of Catalysis 2017; 347: 116-126. doi: 10.1016/j.jcat.2017.01.017
  • 29. Wan Z, Wu W, Chen W, Yang H, Zhang D. Direct synthesis of hierarchical ZSM-5 zeolite and its performance in catalyzing methanol to gasoline conversion. Industrial and Engineering Chemistry Research 2014; 53 (50): 19471-19478. doi: 10.1021/ie5036308
  • 30. Rownaghi AA, Rezaei F, Hedlund J. Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation. Microporous and Mesoporous Materials 2012; 151: 26-33. doi: 10.1016/j.micromeso.2011.11.020
  • 31. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992; 359 (22): 710-712.
  • 32. Chen X, Huang L, Li Q. Hydrothermal Transformation and Characterization of Porous Silica Templated by Surfactants. Journal of Physical Chemistry B 1997; 101 (42): 8460-8467. doi: 10.1021/jp9705333
  • 33. Karlsson A, Stöcker M, Schmidt R. Composites of micro- and mesoporous materials: Simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous and Mesoporous Materials 1999; 27 (2-3): 181-192. doi: 10.1016/S1387-1811(98)00252-2
  • 34. Zhu Y, Hua Z, Zhou J, Wang L, Zhao J et al. Hierarchical mesoporous zeolites: Direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry -A European Journal 2011; 17 (51): 14618-14627. doi: 10.1002/chem.201101401
  • 35. Li Z, Navarro MT, Martínez-Triguero J, Yu J, Corma A. Synthesis of nano-SSZ-13 and its application in the reaction of methanol to olefins. Catalysis Science and Technology 2016; 6 (15): 5856-5863. doi: 10.1039/c6cy00433d
  • 36. Xue T, Liu H, Zhang Y, Wu H, Wu P et al. Synthesis of ZSM-5 with hierarchical porosity: In-situ conversion of the mesoporous silica-alumina species to hierarchical zeolite. Microporous and Mesoporous Materials 2017; 242: 190-199. doi: 10.1016/j.micromeso.2017.01.021
  • 37. Chen L, Zhu SY, Wang YM, He MY. One-step synthesis of hierarchical pentasil zeolite microspheres using diamine with linear carbon chain as single template. New Journal of Chemistry 2010; 34 (10): 2328-2334. doi: 10.1039/c0nj00316f
  • 38. Sanhoob MA, Muraza O, Shafei EN, Yokoi T, Choi KH. Steam catalytic cracking of heavy naphtha (C12) to high octane naphtha over B-MFI zeolite. Applied Catalysis B: Environmental 2017; 210: 432-443. doi: 10.1016/j.apcatb.2017.04.001
  • 39. Zhang C, Chen H, Zhang X, Wang Q. TPABr-grafted MWCNT as bifunctional template to synthesize hierarchical ZSM-5 zeolite. Materials Letters 2017; 197: 111-114. doi: 10.1016/j.matlet.2017.03.085
  • 40. Harkins WD, Jura G. Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. Journal of the American Chemical Society 1944; 66 (8): 1366-1373. doi: 10.1021/ja01236a048
  • 41. Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 1951; 73 (1): 373-380. doi: 10.1021/ja01145a126
  • 42. Coudurier G, Védrine JC. Catalytic and acidic properties of boron pentasil zeolites. Studies in Surface Science and Catalysis 1986; 28 (C): 643-652. doi: 10.1016/S0167-2991(09)60930-7
  • 43. Dawson DM, Moran RF, Ashbrook SE. An NMR Crystallographic Investigation of the Relationships between the Crystal Structure and 29Si Isotropic Chemical Shift in Silica Zeolites. Journal of Physical Chemistry C 2017; 121 (28): 15198-15210. doi: 10.1021/acs.jpcc.7b03730
  • 44. Chu Y, Gao X, Zhang X, Xu G, Li G, Zheng A. Identifying the effective phosphorous species over modified P-ZSM-5 zeolite: A theoretical study. Physical Chemistry Chemical Physics 2018; 20 (17): 11702-11712. doi: 10.1039/c8cp00946e
  • 45. Burkett SL, Davis ME. Mechanism of structure direction in the synthesis of Si-ZSM-5: An investigation by intermolecular 1H-29Si CP MAS NMR. The Journal of Physical Chemistry 1994; 98 (17): 4647-4653. doi: 10.1021/j100068a027
  • 46. Regli L, Bordiga S, Lamberti C, Lillerud KP, Zones SI et al. Effect of boron substitution in chabazite framework: IR studies on the acidity properties and reactivity towards methanol, Journal of Physical Chemistry C 2007; 111 (7): 2992–2999. doi: 10.1021/jp064048w
  • 47. Howden MG. Zeolite ZSM-5 containing boron instead of aluminium atoms in the framework. Zeolites 1985; 5 (5): 334-338. doi: 10.1016/0144-2449(85)90169-1
  • 48. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 2015; 87 (9-10): 1051-1069. doi: 10.1515/pac-2014-1117
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK