A combined first principles TDDFT and experimental study on the UV-Vis spectra properties of M(p-nitrophenyl azo resorcinol)3 complexes (M: Fe, Cr)

UV-Vis absorption data of p-nitrophenyl azo resorcinol (Magneson I) and its 2 Fe(III) and Cr(III) complexes were investigated both experimentally and theoretically. The geometries were optimized at BP86/TZVP level. The most stable spin states were computed as doublet and quartet for Fe(magneson)3 and Cr(magneson)3 complexes, respectively. Time-dependent density functional theory (TDDFT) was employed to explore the absorption spectra properties, whereas the solvent effects were taken into account using the polarizable continuum model (PCM). The M06, B3LYP, and PBE0 hybrid functionals together with TZVP/LANL2TZ basis sets were used for comparing the results with experimental data. The theoretical analysis of electronic structure and molecular orbitals demonstrated that the low-lying absorption bands in the UV-Vis spectra are mainly p \to d ligand-to-metal charge transfer (LMCT) transition and p \to p ligand-to-ligand charge transfer (LLCT) transition for Fe(magneson)3, and, in addition to that of LMCT and LLCT, d \to p metal-to-ligand charge transfer (MLCT) transition for Cr(magneson)3 complexes. The good agreement between the experimental and TDDFT calculation, especially M06 and B3LYP absorption spectra of the metal Magneson I complexes, allowed us to provide a detailed estimation of the main spectral features of ferric and chromic complexes.

A combined first principles TDDFT and experimental study on the UV-Vis spectra properties of M(p-nitrophenyl azo resorcinol)3 complexes (M: Fe, Cr)

UV-Vis absorption data of p-nitrophenyl azo resorcinol (Magneson I) and its 2 Fe(III) and Cr(III) complexes were investigated both experimentally and theoretically. The geometries were optimized at BP86/TZVP level. The most stable spin states were computed as doublet and quartet for Fe(magneson)3 and Cr(magneson)3 complexes, respectively. Time-dependent density functional theory (TDDFT) was employed to explore the absorption spectra properties, whereas the solvent effects were taken into account using the polarizable continuum model (PCM). The M06, B3LYP, and PBE0 hybrid functionals together with TZVP/LANL2TZ basis sets were used for comparing the results with experimental data. The theoretical analysis of electronic structure and molecular orbitals demonstrated that the low-lying absorption bands in the UV-Vis spectra are mainly p \to d ligand-to-metal charge transfer (LMCT) transition and p \to p ligand-to-ligand charge transfer (LLCT) transition for Fe(magneson)3, and, in addition to that of LMCT and LLCT, d \to p metal-to-ligand charge transfer (MLCT) transition for Cr(magneson)3 complexes. The good agreement between the experimental and TDDFT calculation, especially M06 and B3LYP absorption spectra of the metal Magneson I complexes, allowed us to provide a detailed estimation of the main spectral features of ferric and chromic complexes.

___

  • a) Venkataraman, K.; The Chemistry of Synthetic Dyes, vol. III. New York: Academic Press, 1970, b) Beffa, F.; Bock, G. Metal Complex Dyes for Wool and Nylon-1930 to date. Rev. Prog. Coloration, 1984.
  • Katz, H. E.; Singer, K. D.; Sohn, J. E.; Dirk, C. W.; King, L. A.; Gordon, H. M. J Am. Chem. Soc. 1987, 109, 6561–6563.
  • Eich, M.; Wendorff, J. H.; Reck, B.; Ringsdorf, H.; Makromol. Chem., Rapid Commun. 1987, 8, 59–63. a) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304–4312, b) Nazeeruddin, Md. K.; Humphry-Baker, R.; Berner, D.; Rivier, S.; Zuppiroli, L.; Gr¨ aetzel, M. J. Am. Chem. Soc. 2003, 125, 8790–8797. a) Khatua, S.; Choi, S. H.; Lee, J.; Huh, J. O.; Do, Y.; Churchill, D. G. Inorg. Chem. 2009, 48, 1799–1801, b) Malins, C.; Glever, H. G.; Keyes, T. E.; Vos, J. G.; Dressick, W. J.; MacCraith, B. D. Sensors and Actuators B. 2000, 67, 89–95, c) Orellana, G.; Garcia-Fresnadillo, D. Optical Sensors: Industrial, Environmental and Diagnostic Applications. Narayanaswamy, R.; Wolfbeis, O. S., Eds.; Springer-Verlag, Berlin Heidelberg, New York, 2004. a) Zollinger, H., Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments, 3rd Ed.; John Wiley & Sons, USA, 2004, b) Aziz, M. S.; El-Mallah, H. M. Indian J. Pure Appl. Phys. 2009, 47, 530–534. Beech, W. F.; Drew, H. D. K. J. Chem. Soc. 1940, 608–612. a) S ¸ahin, C ¸ . A.; Efe¸ cınar, M.; S ¸atıro˘ glu, N. Journal of Hazardous Materials 2010, 176, 672–677, b) Boltz, D. F.; Mellon, M. G. Analytical Chemistry 1974, 46, 227R–248R, c) Li, J.; Tian, Y.; Huang, Z.; Zhang, X. Applied Surface Science 2006, 252, 2839–2846. a) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002, 117, 43–54, b) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3093. a) Holland, J. P.; Barnard, P. J.; Bayly, S. R.; Dilworth, J. R.; Green, J. C. Inorg. Chim. Acta 2009, 362, 402–406, b) T¨ u˘ gs¨ uz, T.; Sevin, F. Journal of Molecular Structure: THEOCHEM 2006, 775, 29–37, c) Eilmes, A. Theor. Chem. Acc. 2010, 127, 743–750.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ¨ O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.1 Gaussian, Inc., Wallingford CT, 2009.
  • Das, P.; Sarmah, P. P.; Borah, M.; Phukan, A. K. Inorg. Chim. Acta 2009, 362, 5001–5011. a) Tong, Y-P.; Lin, Y-W. Inorg. Chim. Acta 2009, 362, 2167–2171, b) Yang, Y.; Liu, Z.; Zhong, L.; Qiu, P.; Dong, Q.; Cheng, R.; Vanderbilt, J.; Liu, B. Organometallics 2011, 30, 5297–5302, c) Thornley, W. A.; Bitterwolf, T. E. Rev. Roum. Chim. 2010, 55, 765–769. a) Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100, b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822–8824.
  • Schaefer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829–5835.
  • Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241. a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652, b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
  • Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158–6169. a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299–310, b) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029–1031, c) Ehlers, A. W.; B¨ ohme, M.; Dapprich, S.; Gobbi, A.; H¨ ollwarth, A.; Jonas, V.; K¨ ohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111–114, d) Feller, D. J. Comp. Chem. 1996, 17, 1571–1586, e) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045–1052. a) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218–8224, (b) Matsuzawa, N. N.; Ishitani, A . J. Phys. Chem. A 2001, 105, 4953–4962, (c) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439–4449.
  • Dixon, D. A.; Shang, M.; Lappin, A. G. Inorg. Chim. Acta 1999, 290, 197–206.
  • Isaacs, M.; Sykes, A. G.; Ronco, S. Inorg. Chim. Acta 2006, 359, 3847–3854.
  • Appelt, R.; Vahrenkamp, H. Inorg. Chim. Acta 2003, 350, 387–398.
  • Connerade, J. P.; Ma, H.; Shen N.; Stavrakas, T. A J. Phys B: At. Mol. Opt. Phys. 1988, 21, L241–L245.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Selective catalytic reduction of sulfur dioxide by carbon monoxide over iron oxide supported on activated carbon

Guangjian WANG, Liancheng BING, Zhijian YANG, Jiankang ZHANG

Synthesis, structure, and luminescent properties of 2 novel 5-chlorhydroxybenzoate-imidazole metal-organic complexes

Hong CHEN, Siyuan LUO, Xiuling WU, Yongqian WANG, Bo HU

Synthesis and antimicrobial activity of novel 2-[4-(1H-benzimidazol-1-yl)phenyl]-1H-benzimidazoles

Mehmet ALP, Ali Hakan GÖKER, Nurten ALTANLAR

Hard chromium electrodeposition from a trivalent chromium bath containing water-soluble polymer

Vyacheslav PROTSENKO, Viktor GORDIIENKO, Tatiana BUTYRINA, Elena VASIL’EVA, Felix DANILOV

A combined first principles TDDFT and experimental study on the UV-Vis spectra properties of M(p-nitrophenyl azo resorcinol)3 complexes (M: Fe, Cr)

Tuğba TÜĞSÜZ ARİFİOĞLU, Melis EFE ÇINAR, Nuray ŞATIROĞLU

Immobilized metal ion affinity nanospheres for α-amylase immobilization

Adil DENİZLİ, Sinan AKGÖL, Münire Nalan TUZMEN, Tülden KALBURCU

Preparation of a novel solid acid catalyst with Lewis and Brønsted acid sites and its application in acetalization

Yijun DU, Linjun SHAO, Lingyan LUO, Si SHI, Chenze QI

Synthesis, spectral, and thermoanalytical studies on the new heterobimetallic [Mg(II)-Ti(IV)]-m-oxoisopropoxide and its b-diketonates

Rajesh KUMAR

NH-acidities and Hammett correlation of 3-para substituted phenyl-1,2,4-oxadiazol-5(4H)-ones and 1,2 λ4 3,5-oxathiadiazole 2-oxides in nonaqueous media

Nedime DÜRÜST, Yaşar DÜRÜST, Emine Özge GÖZLÜKAYA

A new and simple DP polarographic method for the determination of uric acid in serum after elimination of the interference of ascorbic acid and dopamine

Ali Cengiz ÇALIŞKAN, Güler SOMER