Synthesis, structure, and luminescent properties of 2 novel 5-chlorhydroxybenzoate-imidazole metal-organic complexes

Two novel Zn and Cu complexes with 5-chlorhydroxybenzoate and imidazole ligands, C41H36Zn2N8O13Cl4 (1) and C26H22Cl2Cu2N8O6 (2), were prepared by slow evaporation method. Single crystal X-ray diffraction analysis was used to determine their structures. The purity of the complexes was confirmed by powder X-ray diffraction analysis. In 1 the Zn2+ cation is tetracoordinated with 2 nitrogen atoms from 2 imidazoles and 2 oxygen atoms from the 2 carboxyl groups in 5-chlorhydroxybenzoate. In 2 the coordination polyhedrons of Cu2+ center can be described as distorted square pyramidal geometry sharing common edges, with an oxygen atom on the top of the pyramid. The hydrogen bonds and p-p interactions between the 2 ligands contribute to the presence of the infinite one-dimensional chain in the structure. Furthermore, solid-state fluorescence spectra indicate that both complexes show violet-blue fluorescence and can be potentially used as violet-blue fluorescence materials.

Synthesis, structure, and luminescent properties of 2 novel 5-chlorhydroxybenzoate-imidazole metal-organic complexes

Two novel Zn and Cu complexes with 5-chlorhydroxybenzoate and imidazole ligands, C41H36Zn2N8O13Cl4 (1) and C26H22Cl2Cu2N8O6 (2), were prepared by slow evaporation method. Single crystal X-ray diffraction analysis was used to determine their structures. The purity of the complexes was confirmed by powder X-ray diffraction analysis. In 1 the Zn2+ cation is tetracoordinated with 2 nitrogen atoms from 2 imidazoles and 2 oxygen atoms from the 2 carboxyl groups in 5-chlorhydroxybenzoate. In 2 the coordination polyhedrons of Cu2+ center can be described as distorted square pyramidal geometry sharing common edges, with an oxygen atom on the top of the pyramid. The hydrogen bonds and p-p interactions between the 2 ligands contribute to the presence of the infinite one-dimensional chain in the structure. Furthermore, solid-state fluorescence spectra indicate that both complexes show violet-blue fluorescence and can be potentially used as violet-blue fluorescence materials.

___

  • Wang, S.; Men, G.; Zhao, L.; Hou, Q.; Jiang, S. Sensor. Actuat B-Chem. 2010, 145, 826–831.
  • Yan, B.; Wang, X. L.; Qian, K.; Lu, H. F. J. Potoch. Photobio A. 2010, 212, 75–80.
  • Wang, G.; He, Y. Mater. Lett. 2009, 63 , 470–472.
  • Purkayastha, P.; Chattopadhyay, N.; Patra, G. K.; Datta, D. Indian. J. Chem A. 2000, 39, 375–377.
  • Cai, L. Z.; Chen, W. T.; Wang, M. S.; Guo, C. G.; Huang, J. S. Inorg. Chem. Commun. 2004, 7, 611–613.
  • Selvi, S.; Pu, S. C.; Cheng, Y. M.; Fang, J. M.; Chou, P. T. J. Org. Chem. 2004, 69, 6674–6678.
  • Aghabozorga, H.; Manteghi, F.; Sheshmani, S. J. Iran. Chem. Soc. 2008, 5, 184–227.
  • Zheng, F. K.; Wu, A. Q.; Li, Y.; Guo, C. G.; Wang, M. S.; Li, Q.; Huang, J. S. J. Mol. Struct. 2005, 740, 147–151. Zhang, J. Z.; Cao, W. R.; Pan, J. X.; Chen, Q. W. Inorg. Chem. Commun. 2007, 10, 1360–1364.
  • Reguera, E.; Marin, E.; Calderon, A.; Rodriguez-Hernandez, J. Spectrochim. Acta Part A. 2007, 68, 191–197.
  • Li, X.; Wang, X. W.; Zhang, Y. H. Inorg. Chem. Commun. 2008, 11, 832–834.
  • Garzon-Rodriguez, W.; Yatsimirsky, A. K.; Glabe, C. G. Bioorg. Med. Chem. Lett. 1999, 9, 2243–2248.
  • Sheldrick, G. M. Acta Crystallogr. Sect. A. 1990, 46, 467–473.
  • Sheldrick, G. M. SHELXS-97, Program for the solution of crystal structure; University of G¨ ottingen, Germany, 19 Sheldrick, G. M. SHELXL-97, Program for the refinement of crystal structure; University of G¨ ottingen, Germany, 19 Xu, G. J.; Zhao, Y. H.; Shao, K. Z.; Yuan, G.; Su, Z. M.; Yan, L. K. Inorg. Chem. Commun. 2009, 12, 969–971. Addison, A. W.; Rao, T. N.; Reedijk, J.; Verschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 1349–1356.
  • Battaini, G.; Monzani, E.; Perotti, A.; Para, C.; Casella, L.; Santagostini, L.; Gullotti, M.; Dillinger, R.; N¨ ather, C.; Tuczek, F. J. Am. Chem. Soc. 2003, 125, 4185–4198.
  • Ghosh, T.; Mukhopadhyay, A.; Dargaiah, K. S. C.; Pal, S. Struct. Chem. 2010, 21, 147–152.
  • Liu, D. S.; Sui, Y.; Chen, W. T.; Chen, J. Z.; Huang, C. C. J. Iran. Chem. Soc. 2012, 9, 827–831.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Self-condensation reactions of acyl phosphonates: synthesis of tertiary O-protected a-hydroxyphosphonates

Serkan EYMUR, Mehmet GÖLLÜ, Ayhan Sıtkı DEMİR

Hard chromium electrodeposition from a trivalent chromium bath containing water-soluble polymer

Vyacheslav PROTSENKO, Viktor GORDIIENKO, Tatiana BUTYRINA, Elena VASIL’EVA, Felix DANILOV

NH-acidities and Hammett correlation of 3-para substituted phenyl-1,2,4-oxadiazol-5(4H)-ones and 1,2 l43,5-oxathiadiazole 2-oxides in nonaqueous media

Nedime DÜRÜST, Yaşar DÜRÜST, Emine Özge GÖZLÜKAYA

Experimental investigation of drag reduction effects of polymer additives on turbulent pipe flow using ultrasound Doppler velocimetry

Şerife Zeybek VURAL, Göknur BAYRAM, Yusuf ULUDAĞ

Immobilized metal ion affinity nanospheres for a-amylase immobilization

Tülden KALBURCU, Münire Nalan TÜZMEN

Economic synthesis of quinaldinium fluorochromate(VI), (QnFC), and solvent-free periodic acid oxidation of alcohols catalyzed by QnFC

Melek CANBULAT ÖZDEMİR, Hatice Beytiye ÖZGÜN

Selective catalytic reduction of sulfur dioxide by carbon monoxide over iron oxide supported on activated carbon

Guangjian WANG, Liancheng BING, Zhijian YANG, Jiankang ZHANG

Preparation of a novel solid acid catalyst with Lewis and Brønsted acid sites and its application in acetalization

Yijun DU, Linjun SHAO, Lingyan LUO, Si SHI, Chenze QI

Synthesis, spectral, and thermoanalytical studies on the new heterobimetallic [Mg(II)-Ti(IV)]-m-oxoisopropoxide and its b-diketonates

Rajesh KUMAR

Simulation of impedance spectra of oxalic acid electroreduction to glyoxylic acid: effect of chemical activator, pH, activation energy, and reduction potential

Niyazi Alper TAPAN