Pore length- and ion concentration-dependent ionic current in cylindrical nanopores: an atomistic molecular dynamics study

Pore length- and ion concentration-dependent ionic current in cylindrical nanopores: an atomistic molecular dynamics study

The sensing of individual molecules as they pass through nanopores under an external field is a popularresearch field. The approach is simply based on the detectable temporary blockades in the ionic current as the moleculespass through the nanopores. These signatures of the current have been shown to be a function of nanoparticle andnanopore size and geometry as well as the external electric field. However, models developed in this context fail topredict the experimentally observed behavior in technologically important shorter nanopores. Here we present atomisticmolecular dynamics simulation results from colloidal nanoparticle translocation through mid-to-low aspect ratio chargednanopores under an external field. We show that not only the pore length but also the ion concentration of the mediaand the nanoparticle charge have important effects on the ionic current.

___

  • 1. Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; et al. Nat. Biotechnol. 2008, 26, 1146-53.
  • 2. Lin, X.; Ivanov, A. P.; Edel, J. B. Chem. Sci. 2017, 8, 3905-3912.
  • 3. Issaq, H. J. Electrophoresis. 2001, 22, 3629-38.
  • 4. Franceschini, L.; Soskine, M.; Biesemans, A.; Maglia, G. Nat. Commun. 2013, 4, 2415.
  • 5. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S. Y. Adv. Drug Deliv. Rev. 2008, 60, 1278-1288.
  • 6. Coulter, W. B. U. S. patent 2, 656, 508, 1953.
  • 7. Sattler, K. D. Handbook of nanophysics: nanomedicine and nanorobotics; CRC Press: Boca Raton, Florida, USA, 2010.
  • 8. Bacri, L.; Oukhaled, A.; Schiedt, B.; Patriarche, G.; Bourhis, E.; Gierak, J.; Pelta, J.; Auvray, L. J. Phys. Chem. B. 2011, 115, 2890-2898.
  • 9. Davenport, M.; Healy, K.; Pevarnik, M.; Teslich, N.; Cabrini, S.; Morrison, A. P.; Siwy, Z. S.; Lefftant, S. E. ACS Nano. 2012, 6, 8366-8380.
  • 10. Luo, K.; Huopaniemi, I.; Ala-Nissila, T.; Ying, S.-C. J. Chem. Phys. 2006, 124, 114704.
  • 11. Asghar, W.; Wan, Y.; Ilyas, A.; Bachoo, R.; Kim, Y.-t.; Iqbal, S. M. Lab chip. 2012, 12, 2345-2352.
  • 12. Zhou, K.; Li, L.; Tan, Z.; Zlotnick, A.; Jacobson, S. C. J.Am. Chem. Soc. 2011, 133, 1618-1621.
  • 13. Aksimentiev, A.; Heng, J. B.; Timp, G.; Schulten, K. Biophys. J. 2004, 87, 2086-2097.
  • 14. Aksimentiev, A. Nanoscale. 2010, 2, 468-483.
  • 15. Storm, A. J.; Storm, C.; Chen, J.; Zandbergen, H.; Joanny, J.-F.; Dekker, C. Nano Lett. 2005, 5, 1193-1197.
  • 16. Butler, T. Z.; Gundlach, J. H.; Troll, M. A. Biophys. J. 2006, 90, 190-199.
  • 17. Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R. C.; Li, J.; Yang, J.; Mayer, M. Nat. Nanotechnol. 2011, 6, 253-260.
  • 18. Fologea, D.; Ledden, B.; McNabb, D. S.; Li, J. Appl. Phys. Lett. 2007, 91, 053901.
  • 19. Nikoofard, N.; Fazli, H. Phys. Rev. E. 2012, 85, 021804.
  • 20. Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. Nature. 2010, 467, 190.
  • 21. Ai, Y.; Qian, S. Phys. Chem. Chem. Phys. 2011, 13, 4060-4071.
  • 22. Nadtochiy, A.; Melnikov, D.; Gracheva, M. ACS Nano. 2013, 7, 7053-7061.
  • 23. Jou, I. A.; Melnikov, D. V.; Gracheva, M. E. Nanotechnology. 2016, 27, 205201.
  • 24. Fornasiero, F.; Park, H. G.; Holt, J. K.; Stadermann, M.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Proc. Natl. Acad. of Sci. U. S. A. 2008, 105, 17250-17255.
  • 25. Alexiadis, A.; Kassinos, S. Chem. Eng. Sci. 2008, 63, 2047-2056.
  • 26. Huang, B.; Xia, Y.; Zhao, M.; Li, F.; Liu, X.; Ji, Y.; Song, C. J. Chem. Phys. 2005, 122, 084708.
  • 27. Wang, S.; Zhang, Y.; Abidi, N.; Cabrales, L. Langmuir. 2009, 25, 11078-11081.
  • 28. Dai, J.-F.; Wang, G.-J.; Ma, L.; Wu, C.-K. Rev. Adv. Mater. Sci. 2015, 40, 60-71.
  • 29. Kant, K.; Priest, C.; Shapter, J. G.; Losic, D. Sensors. 2014, 14, 21316-21328.
  • 30. Smeets, R. M.; Keyser, U. F.; Krapf, D.; Wu, M.-Y.; Dekker, N. H.; Dekker, C. Nano Lett. 2006, 6, 89-95.
  • 31. Chang, H.; Kosari, F.; Andreadakis, G.; Alam, M.; Vasmatzis, G.; Bashir, R. Nano Lett. 2004, 4, 1551-1556.
  • 32. Fan, R.; Karnik, R.; Yue, M.; Li, D.; Majumdar, A.; Yang, P. Nano Lett. 2005, 5, 1633-1637.
  • 33. Galla, L.; Meyer, A. J.; Spiering, A.; Sischka, A.; Mayer, M.; Hall, A. R.; Reimann, P.; Anselmetti, D. Nano Lett. 2014, 14, 4176-4182.
  • 34. Barisik, M.; Atalay, S.; Beskok, A.; Qian, S. J. Phys. Chem. C. 2014, 118, 1836-1842.
  • 35. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX. 2015, 1, 19-25.
  • 36. Tieleman, D. P.; MacCallum, J. L.; Ash, W. L.; Kandt, C.; Xu, Z.; Monticelli, L. J. Phys-Condens. Mat. 2006, 18, S1221.
  • 37. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926-935.
  • 38. Verlet, L. Phys. Rev. 1967, 159, 98-103.
  • 39. Páll, S.; Hess, B. Comput. Phys. Commun. 2013, 184, 2641-2650.
  • 40. Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089-10092.
  • 41. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577-8593.
  • 42. Nosé, S. Mol. Phys. 1984, 52, 255-268.
  • 43. Hoover, W. G. Phys. Rev. A. 1985, 31, 1695.
  • 44. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33-38.