Investigation of sulfuric acid-treated activated carbon properties

Investigation of sulfuric acid-treated activated carbon properties

A granulated type of commercial activated carbon (GAC) with surface area of 828 m2/g was treated witha strong solution of sulfuric acid (98% wt.) at a temperature of 30 °C. The physicochemical and porous propertiesand the surface chemistry of the sorbents were investigated and compared in detail. It was established that the lowertemperatures of impregnation and the higher concentration of H2 SO4 solution resulted in the introduction of higherpercentages of sulfur-containing groups and smaller porosity loss. The results of EDS, FTIR, and XPS tests confirmedthe introduction of sulfone groups and acidic oxygenated ones, which increased the adsorbent affinity towards mercuryspecies available in the aqueous phase (pH 7) by 20%. It was found that acid-washing treatment helped to reduce theash content of GAC and cleaned its internal space; however, with the introduction of bulky H2 SO4 molecules intomicropores and narrow mesopores of GAC, the surface area and pore volume were reduced. The increase of mercuryadsorption capacity in spite of decreasing porosity after acid treatment shows that trapping in pores is not the onlymechanism involved in mercury adsorption.

___

  • 1. Ania, C. O.; Bandosz, T. J. In Activated Carbon Surfaces in Environmental Remediation; Bandosz, T. J., Ed. Elsevier: Oxford, UK, 2006, pp. 159-230.
  • 2. Asasian, N.; Kaghazchi, T. Sep. Sci. Technol. 2013, 48, 2059-2072.
  • 3. Feng, W.; Kwon, S.; Feng, X.; Borguet, E.; Vidic, R. D. J. Environ. Eng. 2006, 132, 292-300.
  • 4. Asasian, N.; Kaghazchi, T.; Faramarzi, A.; Hakimi-Siboni, A.; Asadi-Kesheh, R.; Kavand, M.; Mohtashami, S. A. J. Taiwan Inst. Chem. Eng. 2014, 45, 1588-1596.
  • 5. Asasian, N.; Kaghazchi, T. Ind. Eng. Chem. Res. 2012, 51, 12046-12057.
  • 6. Ranganathan, K.; Balasubramanian, N. Eng. Life Sci. 2002, 2, 127-129.
  • 7. Gomez-Serrano, V.; Acedo-Ramos, M.; López-Peinado, A. J. J. Chem. Tech. Biotechnol. 1997, 68, 82-88.
  • 8. Kim, K. H.; Shin, C. S. Carbon Sci. 2001, 2, 109-112.
  • 9. Jiang, Z.; Liu, Y.; Sun, X.; Tian, F.; Sun, F.; Liang, C.; You, W.; Han, C.; Li, C. Langmuir 2003, 19, 731-736.
  • 10. Pak, S. H.; Jeon, M. J.; Jeon, Y. W. Int. Biodeterior. Biodegrad. 2016, 113, 195-200.
  • 11. He, P.; Wu, J.; Jiang, X.; Pan, W.; Ren, J. Surf. Rev. Lett. 2014, 21, 1450018.
  • 12. Abdelouahab Reddam, Z.; Wahby, A.; El Mail, R.; Silvestre-Albero, J.; Rodríguez Reinoso, F.; SepúlvedaEscribano, A. Adsorpt. Sci. Technol. 2014, 32, 101-115.
  • 13. Karagöz, S.; Tay, T.; Ucar, S.; Erdem, M. Bioresour Technol. 2008, 99, 6214-6222.
  • 14. Mashhadi, S.; Javadian, H.; Ghasemi, M.; Saleh, T. A.; Gupta, V. K. Desalin. Water Treat. 2016, 57, 21091-21104.
  • 15. Adibfar, M.; Kaghazchi, T.; Asasian Kolur, N.; Soleimani, M. Chem. Eng. Technol. 2014, 37, 979-986.
  • 16. Jawad, A. H.; Rashid, R. A.; Ishak, M. A. M.; Wilson, L. D. Desalin. Water Treat. 2016, 57, 25194-25206.
  • 17. Gomes, H. T.; Miranda, S. M.; Sampaio, M. J.; Silva, A. M. T.; Faria, J. L. Catal. Today 2010, 151, 153-158.
  • 18. Khayoon, M. S.; Hameed, B. H. Bioresource Technology 2011, 102, 9229-9235.
  • 19. Mendoza, M. B. PhD, Rovira i Virgili University, Tarragona, Spain, 2008.
  • 20. Uddin, M. A.; Yamada, T.; Ochiai, R.; Sasaoka, E.; Wu, S. Energy Fuels 2008, 22, 2284-2289.
  • 21. Morris, E. A.; Kirk, D. W.; Jia, C. Q.; Morita, K. Environ. Sci. Technol. 2012, 46, 7905-7912.
  • 22. Li, Y. H.; Serre, S. D.; Lee, C. W.; Gullett, B. K. In EPA/DOE/EPRI MegaSymposium 2001, Proceedings of the U.S. EPA/DOE/EPRI Combined Power Plant Air Pollutant Control Symposium, and the Air & Waste Management Association Specialty Conference on Mercury Emissions: Fate, Effects, and Control; Chicago, IL, USA, 20–23 August 2001.
  • 23. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A. Introduction to Spectroscopy; Brooks Cole: Belmont, CA, USA, 2008.
  • 24. Kurková, M.; Klika, Z.; Martinec, P.; Pěgřimočová, J. Bull Geosci. 2003, 78, 23-34.
  • 25. Laszlo, K.; Josepovits, K.; Tombacz, E. Anal. Sci. 2001, 17, 1741-1744.
  • 26. Boehm, H. P. Carbon 2002, 40, 145-149.
  • 27. Park, S. J.; Jung, W. Y. J. Colloid Interface Sci. 2002, 250, 93-98.
  • 28. Biniak, S.; Szymanski, G.; Siedlewski, J.; Swiatkowski, A. Carbon 1997, 35, 1799-1810.
  • 29. Chulliyote, R.; Hareendrakrishnakumar, H.; Raja, M.; Gladis, J. M.; Stephan, A. M. Chemistry Select 2017, 2, 10484-10495.
  • 30. Hsi, H. C.; Rood, M. J.; Rostam-Abadi, M.; Chen, S.; Chang, R. Environ. Sci. Technol. 2001, 35, 2785-2791.
  • 31. Katritzky, A. R.; Kim, M. S.; Fedoseyenko, D.; Widyan, K.; Siskin, M.; Francisco, M. Tetrahedron 2009, 65, 1111-1114.
  • 32. Dunham-Cheatham, S.; Farrell, B.; Mishra, B.; Myneni, S.; Fein, J. B. Chem. Geol. 2014, 373, 106-114.
  • 33. Gomes, H. T.; Miranda, S. M.; Sampaio, M. J.; Figueiredo, J. L.; Silva, A. M. T.; Faria, J. L. Appl. Catal. B 2011, 106, 390-397.
  • 34. Ven Pelt, A. H. MSc, Georgia Institute of Technology, Atlanta, GA, USA, 2012.
  • 35. Kaghazchi, T.; Asasian Kolur, N.; Soleimani, M. J. Ind. Eng. Chem. 2010, 16, 368-374.
  • 36. Lowell, S.; Shields, J. E.; Thomas, M. A.; Thommes, M. Characterization of Porous Materials and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, the Netherlands, 2004.
  • 37. Smiciklas, I. D.; Milonjic, S. K.; Pfendt, P.; Raicevic, S. Sep. Purif. Technol. 2000, 18, 185-194.