Transferability of barley retrotransposon primers to analyze genetic structure in Iranian Hypericum perforatum L. populations

Transferability of barley retrotransposon primers was investigated to analyze population structure in St. John's wort (Hypericum perforatum L.) based on inter-retrotransposon amplified polymorphism (IRAP). Seven long terminal repeat (LTR) retrotransposon primers derived from the barley genome were used to detect genetic polymorphism in eight Iranian populations and three cultivars (Helos, New Stem, and Topaz) of H. Perforatum based on IRAP analysis. Nine possible LTR primers/primer combinations successfully amplified fragments from the H. Perforatum genome. In total, 311 bands of 100-3000 base pairs were amplified, of which 244 were polymorphic. The number of polymorphic fragments ranged from 10 (Nikita/5'LTR-2) to 57 (3'LTR), with an average of 27.11. Principal coordinate analysis (PCoA) could clearly differentiate samples of wild populations and cultivars. Based on analysis of molecular variance (AMOVA), among populations variance explained 58% of total molecular variation. This study demonstrates that IRAP markers can be utilized not only to determine the relationships of Hypericum populations and cultivars, but also as a tool for selection of suitable populations for breeding programs.

Transferability of barley retrotransposon primers to analyze genetic structure in Iranian Hypericum perforatum L. populations

Transferability of barley retrotransposon primers was investigated to analyze population structure in St. John's wort (Hypericum perforatum L.) based on inter-retrotransposon amplified polymorphism (IRAP). Seven long terminal repeat (LTR) retrotransposon primers derived from the barley genome were used to detect genetic polymorphism in eight Iranian populations and three cultivars (Helos, New Stem, and Topaz) of H. Perforatum based on IRAP analysis. Nine possible LTR primers/primer combinations successfully amplified fragments from the H. Perforatum genome. In total, 311 bands of 100-3000 base pairs were amplified, of which 244 were polymorphic. The number of polymorphic fragments ranged from 10 (Nikita/5'LTR-2) to 57 (3'LTR), with an average of 27.11. Principal coordinate analysis (PCoA) could clearly differentiate samples of wild populations and cultivars. Based on analysis of molecular variance (AMOVA), among populations variance explained 58% of total molecular variation. This study demonstrates that IRAP markers can be utilized not only to determine the relationships of Hypericum populations and cultivars, but also as a tool for selection of suitable populations for breeding programs.

___

  • Alavi-Kia SS, Mohammadi SA, Aharizad S, Moghaddam M (2008). Analysis of genetic diversity and phylogenetic relationships in Crocus genus of Iran using inter-retrotransposon amplified polymorphism. Biotechnol Biotech Eq 22: 795–800.
  • Arnholdt-Schmitt B (2000). RAPD analysis: A method to investigate aspects of the reproductive biology of Hypericum perforatum L. Theor Appl Genet 100: 906–911.
  • Barcaccia G, Arzenton F, Sharbal TF, Vatotto S, Parrini P, Lucchin M (2006). Genetic diversity and reproductive biology in ecotypes of the facultative apomicts Hypericum perforatum L. Heredity 96: 322–334.
  • Baumel A, Ainouche M, Kelendar R, Schulman AH (2002). Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C E Hubbard (Poaceae). Mol Biol Evol 19: 1218–1227.
  • Boyko E, Kalendar R, Korzun V, Korol A, Schulman AH, Gill BS (2002). A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense related genes: insights into cereal chromosome structure and function. Plant Mol Biol 48: 767–790.
  • Branco CJ, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, Mistura CC, Carvalho FIF, Oliveira CA (2007). IRAP and REMAP assessments of genetic similarity in rice. J Appl Genet 48: 107–113.
  • Canter PH, Thomas H, Ernst E (2005). Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology. Trends Biotechnol 23: 180–185.
  • Chen WC (2010). A quick guide for phyclust package. Ames, IA, USA: Iowa State University.
  • Coleman M, Abbott RJ (2003). Possible causes of morphological variation in an endemic Moroccan groundsel (Senecio leucanthemifolius var. casablancae): evidence from chloroplast DNA and random amplified polymorphic DNA markers. Mol Ecol 12: 423–434.
  • Domyati FM, Younis RAA, Edris S, Mansour A, Sabir G, Bahieldin A (2011). Molecular markers associated with genetic diversity of some medicinal plants in Sinai. J Med Plants Res 5: 200–210.
  • Du XY, Hu QN, Zhang QL, Wang YB, Luo ZR (2013). Transferability of retrotransposon primers derived from persimmon (Diospyros kaki Thunb.) across other plant species. Genet Mol Res 12: 1781–1795.
  • Excoffier L, Smouse PE, Guattro JM (1992). Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131: 479–491.
  • Farooq S, Siddiqui MN, Ray PC, Sheikh MQ, Shahnawaz S, Ashraf Bhat M, Mir MR, Abdin MZ, Ahmad T, Javid J et al. (2014). Genetic diversity analysis in the Hypericum perforatum populations in the Kashmir valley by using inter-simple sequence repeats (ISSR) markers. Afr J Biotech 13: 18–31.
  • Ghaffariyan S, Mohammadi SA, Aharizad S (2011) Patterns of population diversity in lemon balm (Melissa officinalis L.) as revealed by IRAP markers. J Plant Physiol Breed 1: 39–51.
  • Halusková J, Cellárová E (1997). RFLP analysis of Hypericum perforatum L. somaclones and their progenies. Euphytica 95: 229–235.
  • Halusková J, Kosuth J (2003). RAPD analysis of somaclonal and natural DNA variation in Hypericum perforatum L. Acta Biol Cracov Bot 45: 101–104.
  • Jacquemyn H, Honnay O, Galbusera P, Roldán-Ruiz I (2004). Genetic structure of the forest herb Primula elatior in a changing landscape. Mol Ecol 2004: 13: 211–219.
  • Kalendar R, Flavell AJ, Ellis T, Sjakste T, Moisy C, Schulman AH (2011). Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106: 520–530.
  • Kalendar R, Grob T, Regina M, Suomeni A, Schulman A (1999). IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98: 704–711.
  • Kalendar R, Schuman A (2006). IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1: 2478–2484.
  • Kate KT, Laird SA (1999). The Commercial Use of Biodiversity. London, UK: Earthscan Publications Ltd.
  • Kubin A, Wierrani F, Burner U, Alth G, Günburger W (2005). Hypericin – the facts about a controversial agent. Curr Pharm Design 11: 233–253.
  • Larsen HO, Olsen CS (2007). Unsustainable collection and unfair trade? Uncovering and assessing assumptions regarding Central Himalayan medicinal plant conservation. Biodivers Conserv 16: 1679–1697.
  • Mahdei KN (2005). A “SWOT” analysis of medicinal plant production in Iran. Acta Hort 678: 23–27.
  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000). Application of BARE-1 retrotransposon markers to map a major resistance gene for net blotch in barley. Mol Gen Genet 264: 325–334.
  • Mártonfi P, Brutovska R, Cellarova E, Repcak M (1996). Apomixis and hybridity in Hypericum perforatum. Folia Geobot Phytotx 31: 389–396.
  • Mayo GM, Langridge P (2003). Modes of reproduction in Australian populations of Hypericum perforatum L. (St. John’s wort) revealed by DNA fingerprinting and cytological methods. Genome 46: 573–579.
  • Meirmans PG, Van Tienderen PH (2004). GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4: 792–794. 
  • Mohammadi SA, Prasanna BM (2003). Analysis of genetic diversity in crop plants: Salient statistical tools and considerations. Crop Sci 43: 1235–1248.
  • Nei M (1972). Genetic distance between populations. Am Nat 106: 283–292.
  • Nei M (1973). Analysis of gene diversity in subdivided populations. P Natl Acad Sci, USA 70: 3321–3323.
  • Peakall R, Smouse PE (2006). GENALEx 6: genetic analysis in Excel population genetic software for teaching and research. Mol Ecol Not 6: 288–295.
  • Percifield RJ, Hawkins JS, McCoy JA, Widrlechner MP, Wendel JF (2007). Genetic diversity in Hypericum and AFLP markers for species-specific identification of H perforatum L. Planta Med 73: 1614–1621.
  • Pilepić KH, Maleś Ź, Plazibat M (2008). Genetic structure in Hypericum perforatum L. population. Period Biol 110: 367– 371.
  • Powell W, Margenta M, Andre C, Hanfrey M, Vogel J, Tingey S, Rafalsky A (1996). The utility of RFLP RAPD AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2: 225–238.
  • Riazi A, Majnoun-Hosseini N, Naghdi-Badi H, Naghavi MR, Rezazadeh S, Ajani Y (2011). The study of morphological characteristics of St John’s wort (Hypericum perforatum L.) populations in Iran’s natural habitats. J Med Plants 10: 49–64.  
  • Roldain-Ruiz I, Calsyn E, Gilliand TJ, Coll R, van Eijk MJT, De Loose M (2000). Estimating genetic conformity between related ryegrass (Lolium) varieties, 2: AFLP characterization. Mol Breed 6: 593–602.
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984). Ribosomal DNA sepacer-length polymorphism in barley: Mendelian inheritance chromosomal location and population dynamics. P Natl Acad Sci USA 81: 8014–8019.
  • Seidler-Lozykowska K, Dabrowska J (1996). Topaz – the Polish variety of St. John’s wort (Hypericum perforatum L). Herba Pol 42: 140–143.
  • Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011). Genetic diversity of cultivated flax (Linum usitatissimum L) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122: 1385– 1397.
  • Tanksley SD, McCouch SR (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063– 1066.
  • Teo CH, Tan SH, Ho CL, Faridah QZ, Othman YR, Heslop-Harrison JS, Kalendar R, Schulman AH (2005). Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. J Plant Biol 48: 96–105.
  • Vandebroek I, Balick MJ (2012). Globalization and loss of plant knowledge: Challenging the paradigm. PLoS ONE 7(5): e37643. doi:10.1371/journal.pone.0037643.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Towards a new classification of Salvia s.l.: (re)establishing the genus Pleudia Raf.

Maria WILL, Natalie SCHMALZ, Regine CLASSEN-BOCKHOFF

Differential expression of soluble pyrophosphatase isoforms in Arabidopsis upon external stimuli

Zahide Neslihan ÖZTÜRK, Steffen GREINER, Thomas RAUSCH

Influence of culture media and carbon sources on biomass productivity and oil content of the algae Sirogonium sticticum, Temnogyra reflexa, Uronema elongatum, and Chroococcus turgidus

Aftab ALAM, Saleem ULLAH, Sahib ALAM, Hamid Ullah SHAH, Saadia AFTAB, Muhammad SIDDIQ, Nazish MANZOOR

Systematic placement of the Turkish endemic genus Ekimia (Apiaceae) based on morphological and molecular data

Dmitry LYSKOV, Galina DEGTJAREVA, Tahir SAMIGULLIN, Michael PIMENOV

Flow cytometric estimation of the nuclear genome size of 22 Echinops (Asteraceae) taxa from Turkey

Handan ŞAPCI, Monika REWERS, Cem VURAL, Elwira SLIWINSKA

Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses

Yan LI, Xuemei TIAN, Min WEI, Qinghua SHI, Fengjuan YANG, Xiufeng WANG

Taxonomic revision of Astragalus L. section Onobrychoidei DC. (Fabaceae) in Turkey

Murat EKİCİ, Hasan AKAN, Hasan AKAN, Zeki AYTAÇ

Floral function in relation to floral structure in two Periploca species (Periplocoideae) Apocynaceae

Samia HENEIDAK, Yougasphree NAIDOO

Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance

Kobra MAGHSOUDI, Yahya EMAM, Muhammad ASHRAF

Transferability of barley retrotransposon primers to analyze genetic structure in Iranian Hypericum perforatum L. populations

Razea Asadkhani MAMAGHANI, Seyed Abolghasem MOHAMMADI, Saeid AHARIZAD