Flow cytometric estimation of the nuclear genome size of 22 Echinops (Asteraceae) taxa from Turkey

Taxonomic classification of the genus Echinops (Asteraceae) is still unclear, mostly because of the small morphological differences between the species. Estimation of genome size is helpful in species identification and in establishing a relationship between them; however, nuclear DNA content has been established for only 25% of known Echinops species. In the present study, in addition to the chromosome number, the DNA content of species in 22 taxa belonging to 3 sections (Echinops, Oligolepis, and Ritropsis) was estimated using flow cytometry; 9 of the species are endemic to Turkey. For 16 of the species this is the first report on their genome size. The chromosome numbers of the studied species were 2n = 28, 30, 32, or 34; the 2C DNA content ranged from 5.55 to 13.96 pg, and the mean DNA content per chromosome from 0.19 to 0.45 pg. The possible chromosome rearrangements during evolution of the genus are discussed. It is suggested that the ancestral section of the genus Echinops is Oligolepis, and the most modern one Echinops. The results allowed for the verification of the taxonomic position of some Echinops species, which previously were classified based only on morphological characteristics.

Flow cytometric estimation of the nuclear genome size of 22 Echinops (Asteraceae) taxa from Turkey

Taxonomic classification of the genus Echinops (Asteraceae) is still unclear, mostly because of the small morphological differences between the species. Estimation of genome size is helpful in species identification and in establishing a relationship between them; however, nuclear DNA content has been established for only 25% of known Echinops species. In the present study, in addition to the chromosome number, the DNA content of species in 22 taxa belonging to 3 sections (Echinops, Oligolepis, and Ritropsis) was estimated using flow cytometry; 9 of the species are endemic to Turkey. For 16 of the species this is the first report on their genome size. The chromosome numbers of the studied species were 2n = 28, 30, 32, or 34; the 2C DNA content ranged from 5.55 to 13.96 pg, and the mean DNA content per chromosome from 0.19 to 0.45 pg. The possible chromosome rearrangements during evolution of the genus are discussed. It is suggested that the ancestral section of the genus Echinops is Oligolepis, and the most modern one Echinops. The results allowed for the verification of the taxonomic position of some Echinops species, which previously were classified based only on morphological characteristics.

___

  • Bennett MD (1998). Plant genome values: how much do we know? P Natl Acad Sci USA 95: 2011–2016.
  • Bennett MD, Leitch IJ (1995). Nuclear DNA amounts in angiosperms. Ann Bot-London 76: 113–176.
  • Bobrov EG (1997). Echinops L. In: Shishkin BK, Bobrov EG, editors. Flora of the USSR, Vol. 27. Koenigstein, Germany: Koeltz Scientific Books, pp. 1–70.
  • Chramiec-Głąbik A, Grabowska-Joachimiak A, Sliwinska E, Legutko J, Kula A (2012). Cytogenetic analysis of Miscanthus × giganteus and its parent forms. Caryologia 65: 234–242.
  • Davis PH (1956). Fourteen new species from Turkey. Notes Roy Bot Gard, Edinburgh, UK 22: 65–84.
  • Doležel J, Bartoš J (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot-London 95: 99–110.
  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998). Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot-London 82 Suppl. A: 17–26.
  • Doležel, J, Greilhuber J, Suda J (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2: 2233– 2244.
  • Galbraith W, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 4601: 1049–1051.
  • Galbraith, DW, Lambert, GM, Macas, J, Doležel, J (1997) Analysis of nuclear DNA content and ploidy in higher plants. Current Protocols in Cytometry 7.6.1–7.6.22.
  • Garnatje T, Susanna A, Garcia-Jacas N, Vilatersana R, Vallès J (2005). A first approach to the molecular phylogeny of the genus Echinops L. (Asteraceae): sectional delimitation and relationships with the genus Acantholepis Less. Folia Geobot 40: 407–419.
  • Garnatje T, Vallès J, Garcia S, Hidalgo O, Sanz M, Canela MA, Siljak- Yakovlev S (2004a). Genome size in Echinops L. and related genera (Asteraceae, Cardueae): karyological, ecological and phylogenetic implications. Biol Cell 96: 117–124.
  • Garnatje T, Vilatersana R, Susanna A, Vallès J, Siljak-Yakovlev S (2004b). Contribution to the karyological knowledge of Echinops L. (Asteraceae, Cardueae) and related genera. Bot J Linn Soc 145: 337–344.
  • Gemici Y, Leblebici E (1992). A new species of Echinops (Asteraceae) from Anatolia (Turkey). Candollea 47: 597–599.
  • Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S (1993). Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14: 618–626.
  • GSAD (2014). Genome Size in Asteraceae Database. Website http:// www.etnobiofic.cat/gsad_v2/ [accessed 23 May 2014].
  • Hedge IC (1975). Echinops L. In: Davis PH, editor. Flora of Turkey and the East Aegean Islands, Vol. 5. Edinburgh, UK: Edinburgh University Press, pp. 609–622.
  • Jäger EJ (1987). Arealkarten der Asteraceen - Tribus als Grundlage der ökogeographischen Sippencharacteristik. Botanische Jahrbücher für Systematik 108: 481–497 (in German).
  • Klos J, Sliwinska E, Kula A, Golczyk H, Grabowska-Joachimiak A, Ilnicki T, Szostek K, Stewart A, Joachimiak AJ (2009). Karyotype and nuclear DNA content of hexa-, octo-, and duodecaploid lines of Bromus subgen. Ceratochloa. Genet Mol Biol 32: 528–537.
  • Kožuharov SI (1976). Echinops L., Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, editors. Flora Europaea, Vol. 4. Cambridge, UK: Cambridge University Press, pp. 212–214.
  • Lavia GI, Fernández A (2008). Genome size in wild and cultivated peanut germplasm. Plant Syst Evol 272: 1–10.
  • Leitch IJ, Bennett MD (2004). Genome downsizing in polyploid plants. Biol J Linn Soc 82: 651–663.
  • Leitch IJ, Chase MW, Bennett MD (1998). Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot-London 82, Suppl. 1: 85–94.
  • Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008). The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot- London 101: 805–814.
  • Lysák MA, Doležel J (1998). Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52: 123–132.
  • Meriç Ç, Güler N (2008). Nuclear DNA content of Dianthus ingoldbyi (Caryophyllaceae). Phytologia Balcanica 14: 413–416.
  • Naganowska B, Wolko B, Śliwińska E, Kaczmarek Z, Schifino- Wittmann MT (2006). 2C DNA variation and relationships among New World species of the genus Lupinus (Fabaceae). Plant Syst Evol 256: 147–157.
  • Rayburn AL, Auger JA (1990). Genome size variation in Zea mays subsp. mays adapted to different altitudes. Theor Appl Genet 79: 470–474.
  • Rechinger KH (1979). Flora des Iranischen Hochlandes und der umrahmenden Gebirge. In: Rechinger KH, editor. Compositae III – Cynareae. Graz, Austria: Akademische Druck-u. Verlagsanstalt (in German).
  • Reeves G, Francis D, Davies MS, Rogers HJ, Hodkinson TR (1998). Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Ann Bot-London 82 Suppl. A: 99–105.
  • Sánchez-Jiménez I, Hidalgo O, Canela MA, Siljak-Yacovlev S, Šolić ME, Vallès J, Garnatje T (2012). Genome size and chromosome number in Echinops (Asteraceae, Cardueae) in the Aegean and Balkan regions: technical aspects of nuclear DNA amount assessment and genome evolution in a phylogenetic frame. Plant Syst Evol 298: 1085–1099.
  • Sánchez-Jiménez I, Lazkov GA, Hidalgo O, Garnatje T (2010). Molecular systematics of Echinops L. (Asteraceae; Cynareae): a phylogeny based on ITS and trnL-trnF sequences with emphasis on sectional delimitation. Taxon 59: 698–708.
  • Semple JC, Watanabe K (2009). A review of chromosome numbers in Asteraceae with hypotheses on chromosomal base number evolution. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ, editors. Systematics, evolution and biogeography of Compositae. Vienna, Austria: International Association for Plant Taxonomy, pp. 61–72.
  • Sheidai M, Nasirzadeh A, Kheradnam M (2000). Karyotypic study of Echinops (Asteraceae) in Fars Province, Iran. Bot J Linn Soc 134: 453–463.
  • Sliwinska E, Zielinska E, Jędrzejczyk I (2005). Are seeds suitable for flow cytometric estimation of plant genome size? Cytometry Part A 64: 72–79.
  • Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003). Evolution of genome size in the angiosperms. Am J Bot 90: 1596–1603.
  • Vural C (2012). Two new species of Echinops sect. Ritropsis (Asteraceae) from Turkey. Ann Bot Fenn 49: 95–98.
  • Vural C, Biter MK, Dadandı MY (2010). A new species of Echinops (Asteraceae: Cardueae) from Turkey: Echinops dumanii C. Vural. Turk J Bot 34: 513–519.
  • Vural C, Şapcı H (2012). Five new records of the genus Echinops (Asteraceae) from Turkey. Turk J Bot 36: 151–160.
  • Zoldos V, Papes D, Brown SC, Panaud O, Siljak-Yakovlev S (1998). Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41: 162–168.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Genetic diversity and relationships within and among Onobrychis species using molecular markers

Mohammad ZARRABIAN, Mohammad Mahdi MAJIDI

Influence of culture media and carbon sources on biomass productivity and oil content of the algae Sirogonium sticticum, Temnogyra reflexa, Uronema elongatum, and Chroococcus turgidus

Aftab ALAM, Saleem ULLAH, Sahib ALAM, Hamid Ullah SHAH, Saadia AFTAB, Muhammad SIDDIQ, Nazish MANZOOR

Phylogeny of Korean Opuntia spp. based on multiple DNA regions

Krishnamoorthy SRIKANTH, Sung Soo WHANG

Systematic placement of the Turkish endemic genus Ekimia (Apiaceae) based on morphological and molecular data

Dmitry LYSKOV, Galina DEGTJAREVA, Tahir SAMIGULLIN, Michael PIMENOV

Differential expression of soluble pyrophosphatase isoforms in Arabidopsis upon external stimuli

Zahide Neslihan ÖZTÜRK, Steffen GREINER, Thomas RAUSCH

Reproductive biology of the narrow endemic Anchusa littorea Moris (Boraginaceae), an endangered coastal Mediterranean plant

Donatella COGONI, Giuseppe FENU, Gianluigi BACCHETTA

Transferability of barley retrotransposon primers to analyze genetic structure in Iranian Hypericum perforatum L. populations

Razea Asadkhani MAMAGHANI, Seyed Abolghasem MOHAMMADI, Saeid AHARIZAD

Floral function in relation to floral structure in two Periploca species (Periplocoideae) Apocynaceae

Samia HENEIDAK, Yougasphree NAIDOO

Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses

Yan LI, Xuemei TIAN, Min WEI, Qinghua SHI, Fengjuan YANG, Xiufeng WANG

Flow cytometric estimation of the nuclear genome size of 22 Echinops (Asteraceae) taxa from Turkey

Handan ŞAPCI, Monika REWERS, Cem VURAL, Elwira SLIWINSKA