Patterns of phylogeography and vicariance of Chamaerops humilis L. (Palmae)

Chamaerops humilis L. is 1 of 2 native palms occurring in Europe and the only native palm in the West Mediterranean region. Our aims were: (1) to describe its phylogeographic structure; (2) to infer a biogeographic scenario to explain its present distribution; and (3) to assess changes in its distribution from the last interglacial period. Twenty-two populations were sampled. An amplified fragment length polymorphism analysis produced 226 fragments, which allowed recognition of 4 groups of populations: (1) E Iberian Peninsula plus Al Hoceima (NE Morocco), the Balearics, and Sardinia; (2) France, the Italian Peninsula, and Sicily; (3) SW Iberian Peninsula and NW Morocco; and (4) S Morocco (var. argentea André; the first 3 groups are currently included in var. humilis). The phylogenetic information and molecular clock-related estimates, combined with geological and fossil history from the Eocene to present, suggest that C. humilis occurred in Central Europe in the Tertiary, reaching (1) Spain and (2) Italy, with expansion from here across North Africa to (3) N Morocco and S Spain, and (4) S Morocco. Climatic changes may also help explain the fragmented current distribution of this species. The groups of populations are sufficiently genetically distinct to recommend conservation of at least some populations in each region.

Patterns of phylogeography and vicariance of Chamaerops humilis L. (Palmae)

Chamaerops humilis L. is 1 of 2 native palms occurring in Europe and the only native palm in the West Mediterranean region. Our aims were: (1) to describe its phylogeographic structure; (2) to infer a biogeographic scenario to explain its present distribution; and (3) to assess changes in its distribution from the last interglacial period. Twenty-two populations were sampled. An amplified fragment length polymorphism analysis produced 226 fragments, which allowed recognition of 4 groups of populations: (1) E Iberian Peninsula plus Al Hoceima (NE Morocco), the Balearics, and Sardinia; (2) France, the Italian Peninsula, and Sicily; (3) SW Iberian Peninsula and NW Morocco; and (4) S Morocco (var. argentea André; the first 3 groups are currently included in var. humilis). The phylogenetic information and molecular clock-related estimates, combined with geological and fossil history from the Eocene to present, suggest that C. humilis occurred in Central Europe in the Tertiary, reaching (1) Spain and (2) Italy, with expansion from here across North Africa to (3) N Morocco and S Spain, and (4) S Morocco. Climatic changes may also help explain the fragmented current distribution of this species. The groups of populations are sufficiently genetically distinct to recommend conservation of at least some populations in each region.

___

  • Akaike H (1974). A new look at the statistical model identification. IEEE T Automat Contr 19: 716–723.
  • Applied Biosystems (1989–2000). GeneScan version 3.1.2. Foster City, CA, USA: Applied Biosystems.
  • Asmussen CB, Dransfield J, Deickmann V, Barfod AS, Pintaud JC, Baker WJ (2006). A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny. Bot J Linnean Soc 151: 15–38.
  • Avise JC (2000). Phylogeography: The History and Formation of Species. Cambridge, MA, USA: Harvard University Press.
  • Bacon CD, Baker WJ, Simmons MP (2012). Miocene dispersal drives island radiations in the palm tribe Trachycarpeae (Arecaceae). Syst Biol 61: 426–442.
  • Baker WJ, Savolainen V, Asmussen-Lange CB, Chase MW, Dransfield J, Forest F, Harley MM, Uh NW, Wilkinson M (2009). Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. Syst Biol 58: 240–256.
  • Benham J, Jeung JU, Jasieniuk M, Kanazin V, Blake T (1999). Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. J Agric Genomics 4: 3.
  • Blears MJ, De Grandis SA, Lee H, Trevors JT (1998). Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biot 21: 99–114.
  • Bonin A, Ehrich D, Manel S (2007). Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16: 3737–3758.
  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterschmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD et al. (2007). Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Clim Past 3: 261–277.
  • Carrión JS (2002). A taphonomic study of modern pollen assemblages from dung and surface sediments in arid environments of Spain. Rev Palaeobot Palyno 120: 217–232.
  • Carrión JS (2003). Evolución vegetal. Murcia, Spain: Diego Marín Librero-Editor (in Spanish).
  • Carrión JS, editor (2012). Paleoflora y paleovegetación de la Península Ibérica e Islas Baleares: Plioceno–Cuaternario. Madrid, Spain: Ministerio de Economía y Competitividad (in Spanish).
  • Casimiro-Soriguer R, Talavera M, Balao F, Terrab A, Herrera J, Talavera S (2010). Phylogeny and genetic structure of Erophaca (Leguminosae), a East-West Mediterranean disjunct genus from the Tertiary. Mol Phylog Evol 56: 441–450.
  • del Cañizo JA (2011). Palmeras. 3rd ed. Madrid, Spain: Ediciones Mundi-Prensa (in Spanish). do Amaral Franco J (1980) Chamaerops. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, editors. Flora Europaea, Vol. V. Cambridge, UK: Cambridge University Press, p. 267.
  • Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19: 11–15.
  • Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008). Genera Palmarum. Evolution and Classification of the Palms. 2nd ed. London, UK: Royal Botanic Gardens, pp. 247–249.
  • Düfay M., Anstett MC (2004). Cheating is not always punished: killer female plants and pollination by deceit in the dwarf palm Chamaerops humilis. J Evolution Biol 17: 862–868.
  • Duggen S, Hoernle K, van den Bogaard P, Rüpke L, Morgan JP (2003). Deep roots of the Messinian salinity crisis. Nature 422: 602–606.
  • Ehrich D (2006). AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6: 603–604.
  • Ehrich D, Eidesen PB, Alsos IG, Brochmannm C (2009). An AFLP clock for absolute dating of shallow-time evolutionary history – too good to be true? Mol Ecol 18: 4526–4532.
  • El Mousadik A, Petit RJ (1996). High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92: 832–839.
  • Excoffier L, Laval G, Schneider S (2005). Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 47–50.
  • Falush D, Stephens M, Pritchard JK (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.
  • FAO/IIASA/ISRIC/ISSCAS/JRC (2012). Harmonized World Soil Database (version 1.2). Rome, Italy: FAO, and Laxenburg, Austria: IIASA.
  • Fedriani JM, Delibes M (2011). Dangerous liaisons disperse the Mediterranean dwarf palm: fleshy-pulp defensive role against seed predators. Ecology 92: 304–315.
  • García-Castellanos D, Villaseñor A (2011). Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar Arc. Nature 480: 359–363.
  • Givulescu R, Barbu O (1999). Eine fossile Palme Chamaerops humilis Linné fossilis Kolakovski aus dem Miozän von Rumänien. Beiträge zur Paläontologie 24: 87–90 (in German).
  • Govaerts R, Dransfield J (2005). World Checklist of Palms. London, UK: The Board of Trustees of the Royal Botanic Gardens, Kew Publishing.
  • Herrera CM (1995). Plant-vertebrate seed dispersal systems in the Mediterranean: ecological, evolutionary, and historical determinants. Annu Rev Ecol Syst 26: 705–727.
  • Herrera J (1989). On the reproductive biology of the dwarf palm, Chamaerops humilis in Southern Spain. Principes 33: 27–32.
  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 1965–1978.
  • Huson DH, Bryant D (2006). Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267.
  • Jafri SMH, El-Gadi A (1977). Flora of Libya, Vol. XXXVI. Tripoli, Libya: Al-Faateh University.
  • Jakobsson M, Rosenberg NA (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806.
  • Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd ed. Berlin, Germany: Springer Verlag.
  • Kovar-Eder J, Kvaček Z, Martinetto E, Roiron P (2006). Late Miocene to Early Pliocene vegetation of Southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeogr Palaeocl 238: 321–339.
  • Kropf M, Comes HP, Kadereit JW (2009). An AFLP clock for the absolute dating of shallow-time evolutionary history based on the intraspecific divergence of southwestern European alpine plant species. Mol Ecol 18: 697–708.
  • Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone MC, Vendramin GG (2007). The distribution of Quercus suber chloroplast haplotypes matches the palaeographical history of the Western Mediterranean. Mol Ecol 16: 5259–5266.
  • Mai DH (1989). Development and regional differentiation of the European vegetation during the Tertiary. Plant Syst Evol 162: 79–91.
  • Maire R (1980). Flore de L’Afrique du Nord, Vol. XV. Paris, France: L’Imprimerie Jouve pour les Éditions Lechevalier S.A.R.L. (in French).
  • McQuarrie ADR, Tsai CL (1998). Regression and Time Series Model Selection. Singapore: World Scientific Publishing.
  • Médail F, Quézel P (1996). Signification climatique et phyto- écologique de la redécouverte en France méditerranéenne de Chamaerops humilis L. (Palmae). Comptes rendus de l’Académie des sciences (Paris), Sciences de la vie 319: 139–45 (in French).
  • Meijer PTh, Krijgsman W (2005). A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis. Earth Planet Sc Lett 240: 510–520.
  • Ortiz MÁ, Tremetsberger K, Stuessy T, Terrab A, García-Castaño JL, Talavera S (2009). Phylogeographic patterns in Hypochaeris section Hypochaeris (Asteraceae, Lactuceae) of the Western Mediterranean. J Biogeogr 36: 1384–1397.
  • Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A (2006) Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311: 1751–1753.
  • Palamarev E (1989). Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol 162: 93–107.
  • Palamarev E, Bozukov V, Uzunova K, Petkova A, Kitanov G (2005). Catalogue of the Cenozoic plants of Bulgaria (Eocene to Pliocene). Phytologia Balcanica 11: 215–364.
  • Phillips SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231–259.
  • Plinius Secundus G (1st century AD). Naturalis Historiae, Vol. XIII. In: Bostock J, Riley HT, translators (1855). The Natural History of Pliny, Vol. III. London, UK: HG Bohn.
  • Pons A (1981). The history of the Mediterranean shrublands. In: di Castri F, Goodall DW, Specht RL, editors. Mediterranean-Type Shrublands. Amsterdam, the Netherlands: Elsevier Science Publishing Company, p. 131–138.
  • Pritchard JM, Stephens M, Donnelly P (2000). Inference of population structure from multilocus genotype data. Genetics 155: 945–959.
  • Rosenbaum G, Lister GS, Duboz C (2002). Reconstruction of the tectonic evolution of the Western Mediterranean since the Oligocene. In: Rosenbaum G, Lister GS, editors. Reconstruction of the Evolution of the Alpine-Himalayan Orogen. Journal of the Virtual Explorer 8: 107–130.
  • Rosenberg NA (2004). Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4: 137–138.
  • Schlüter PM, Harris SA (2006). Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6: 569–572.
  • Schwarz G (1978). Estimating the dimension of a model. Ann Stat 6: 461–464.
  • Skrede I, Bronken Eidesen P, Piñeiro Portela R, Brochmann C (2006). Refugia, differentiation and postglacial migration in arcticalpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Mol Ecol 15: 1827–1840.
  • Terrab A, Schönswetter P, Talavera S, Vela E, Stuessy TF (2008). Range- wide phylogeography of Juniperus thurifera L., a presumptive keystone species of Western Mediterranean vegetation during cold stages of the Pleistocene. Mol Phylogenet Evol 48: 94–102.
  • Terrab A, Talavera S, Arista M, Paun O, Stuessy TF, Tremetsberger K (2007). Genetic diversity and geographic structure at chloroplast microsatellites (cpSSRs) in endangered West Mediterranean firs (Abies spp., Pinaceae). Taxon 56: 409–416.
  • Terral JF, Alonso N, Capdevila RBI, Chatti N, Fabre L, Fiorentino G, Marinval P, Jordá GP, Pradat B, Rovira N et al. (2004). Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31: 63–77.
  • Thompson JD (2005). Plant Evolution in the Mediterranean. New York, NY, USA: Oxford University Press.
  • Velitzelos E, Gregor HJ (1990). Some aspects of the Neogene floral history in Greece. Rev Palaeobot Palyno 62: 291–307.
  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.
  • Yeh FC, Boyle TJB (1997). Population genetic analysis of co- dominant and dominant markers and quantitative traits. Belg J Bot 129: 157.
  • Zouhri L, Lamouroux C, Buret C (2001). The Mamora Plain, a hinge between the Meseta and the Rif. Its importance in the post- Paleozoic geodynamic evolution of Morocco. Geodin Acta 14: 361–372.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Identifcation and functional analysis of new conserved microRNAs and their targets in potato ( Solanum tuberosum L.)

Ifekhar Ahmed BALOCH, Muhammad DIN, Muhammad Younas Khan BAROZAI

Comparative analysis of hexaploid Avena species using REMAP and ISSR methods

Edyta PACZOS-GRZEDA, Piotr Tomasz BEDNAREK

Assessment of genetic diversity and phylogenetic relationships of endangered endemic plant Barbarea integrifolia DC. (Brassicaceae) in Turkey

Ertuğrul FİLİZ, Etem OSMA, Ali KANDEMİR, Hüseyin TOMBULOĞLU

Genetic diversity of Turkish commercial cotton varieties revealed by molecular markers and fber quality traits

Eminur ELÇİ, Yaşar AKIŞCAN, Batuhan AKGÖL

Patterns of phylogeography and vicariance of Chamaerops humilis L. (Palmae)

Juan Luis GARCÍA-CASTAÑO, Anass TERRAB, María Ángeles ORTIZ, Tod Falor STUESSY, Salvador TALAVERA

The Colchic region as refuge for relict tree lineages: cryptic speciation in field maples

Guido W. GRIMM, Thomas DENK

First karyotype analysis, physical rDNA mapping, and genome size assessment in 4 North African Astragalus taxa (Fabaceae)

Karim BAZIZ, Meriem BENAMARA-BELLAGHA, Fatima PUSTAHIJA, Spencer C. BROWN, Sonja SILJAK-YAKOVLEV, Nadra KHALFALLAH

Life cycle versus systematic placement: phylogenetic and cytogenetic studies in annual Artemisia (Asteraceae, Anthemideae)

Jaume PELLICER, Oriane HIDALGO, Teresa GARNATJE, Katsuhiko KONDO, Joan VALLÈS

A taxonomic reassessment of the Tanacetum aureum (Asteraceae, Anthemideae) species group: insights from morphological and molecular data

Marzie KAZEMI, Ali SONBOLI, Hassan ZARE MAIVAN, Shahrokh KAZEMPOUR OSALOO

Dörte HARPKE, Lorenzo PERUZZI, Helmut KERNDORFF, Theophanis KARAMPLIANIS, Theophanis CONSTANTINIDIS, Vladimir RANDELOVIC, Novica RANDELOVIC, Marina JUSKOVIC, Erich PASCHE, Frank R. BLATTNER