Driving factors affecting the phytoplankton functional groups in a deep alkaline lake

Driving factors affecting the phytoplankton functional groups in a deep alkaline lake

This study evaluated the phytoplankton communities based on functional groups to obtain information about the water quality of Lake İznik, Turkey. The phytoplankton consisted of 103 taxa, classified in 12 phytoplankton functional groups (PFGs), with dominancy of 5 species, Chrysosporum ovalisporum, Dolichospermum mendotae, Planktothrix rubescens, Fragilaria capucina, and Mougeotia sp. The Shannon–Wiener diversity index (H’) was calculated and results ranged between 0.41 and 2.47. The redundancy analysis (RDA) and Spearman’s correlation analysis were used to assess the relationships between the PFGs and environmental variables. According to the multiple comparisons of the data, the main efficient factors that determined the seasonal distribution of the PFGs were TP, DO, SiO2, SD, and pH. The ecological requirements of the dominant PFGs (C, D, F, J, H1, Lo, SN, N, P, R, T, and X2) indicated mainly meso-eutrophic waters. Similarly, Carlson’s trophic state index (TSI) stated mesotrophy conditions. As a result, the approach of PFGs can be successfully applied in a deep, alkaline lake to understand the water quality and trophic status.

___

  • Albay M (1996). The investigation of pollution levels from the point of view of biology of Lake İznik. PhD, İstanbul University, Istanbul,Turkey.
  • Albay M, Aykulu G (2002). Invertebrate grazer-epiphytic algae interactions on submerged macrophytes in a mesotrophic Turkish lake. Su Ürünleri Dergisi 19 (1): 247-258.
  • Albay M, Akçaalan R (2003). Factors influencing the phytoplankton steady state assemblages in a drinking-water reservoir (Ömerli reservoir, Istanbul). Hydrobiologia 502: 85-95.
  • Aktan Y, Aykulu G (2001). Algal communities living on the littoral sediments of Lake İznik. İÜ Journal of Fisheries & Aquatic Sciences 12: 31-48.
  • Akcaalan R, Köker L, Oğuz A, Spoof L, Meriluoto J et al. (2014a). First report of cylindrospermopsin production by two cyanobacteria (Dolichospermum mendotae and Chrysosporum ovalisporum) in Lake İznik, Turkey. Toxins 6 (11): 3173-3186.
  • Akcaalan R, Köker L, Gürevin C, Albay M (2014b). Planktothrix rubescens: a perennial presence and toxicity in Lake Sapanca. Turkish Journal of Botany 38 (4): 782-789.
  • APHA (1989). Standard methods for the examination of water and waste water. 17th edition. Washington D.C.: APHA, AWAA, WPFC, pp. 113.
  • Atıcı T, Alaş A (2012). A study on the trophic status and phytoplanktonic algae of Mamasin Dam Lake (AksarayTurkey). Turkish Journal of Fisheries and Aquatic Sciences 12(3): 595-601.
  • Briand JF, Leboulanger C, Humbert JF, Bernard C, Dufour P (2004). Cylindrospermopsis raciborskii (Cyanobacteria) Invasion at mid-latitudes: selection wide physiological tolerance, orglobalwarming?. Journal of Phycology 40 (2): 231-238
  • Carlson RE (1977). A trophic state index for lakes. Limnology and Oceanography 22 (2): 361-369.
  • Carlson, R.E. 1992. Expanding the trophic state concept to identify non-nutrient limited lakes and reservoirs. [In] Proceedings of a National Conference on Enhancing the States’ Lake Management Programs. Monitoring and Lake Impact Assessment; Chicago, USA. pp. 59-71
  • Carvalho L, Miller CA, Scott EM, Codd GA, Davies PS et al. (2011). Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management. Science of the Total Environment 409 (24): 5353- 5358.
  • Çelekli A, Öztürk B (2014). Determination of ecological status and ecological preferences of phytoplankton using multivariate approach in a Mediterranean reservoir. Hydrobiologia 740 (1): 115-135.
  • Çelik K, Sevindik TO (2015). The phytoplankton functional group concept provides a reliable basis for ecological status estimation in the Çaygören Reservoir (Turkey). Turkish Journal of Botany 39 (4): 588-598.
  • Demir AN, Fakıoğlu Ö, Dural B (2014). Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey). Turkish Journal of Botany 38 (1): 169-179.
  • Di Maggio J, Fernández C, Parodi ER, Diaz MS, Estrada V (2016). Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models. Journal of Environmental Management 165: 31-52.
  • European Commission (2000). Directive 2000/60/EC of October 23 2000 of the European Parliament and the Council establishing a framework for community action in the field of water policy. The Official Journal of the European Union 327: 1-72.
  • Forti A (1911). Diagnoses myxophycearum novarum. éditeur non identifié. Verona (in Italian).
  • Grime JP (1979). Plant strategies and vegetation processes. USA: Wiley
  • Hadas O, Pinkas R, Malinsky-Rushansky N, Shalev-Alon G, Delphine E et al. (2002). Physiological variables determined under laboratory conditions may explain the bloom of Aphanizomenon ovalisporum in Lake Kinneret. European Journal of Phycology 37 (2): 259-267.
  • Havens KE (2000). Using trophic state index (TSI) values to draw inferences regarding phyto-plankton limiting factors and seston composition from routine water quality monitoring data. Korean Journal of Limnology 33 (3): 187-196.
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35 (2): 403-424.
  • Hoyer AB, Moreno-Ostos E, Vidal J, Blanco JM, Palomino-Torres RL et al. (2009). The influence of external perturbations on the functional composition of phytoplankton in a Mediterranean reservoir. Hydrobiologia 636 (1): 49-64.
  • ISO 10260 (1992). Water quality, measurement of biochem. parameters; spectrometric determination of the chlorophyll-a concentration. Beuth Verlag GmbH Berlin-Vien – Zürich
  • John DM (2005). The freshwater alga Flora of the British Isles. London, UK: Press Syndicate of the University of Cambridge
  • Komárek J, Anagnostidis K (2007). Cyanoprokaryota, part 2. Oscillatoriales. Germany: Springer Spektrum.
  • Köker L, Akçaalan R, Oguz A, Gaygusuz O, Gürevin C et al. (2017). Distribution of toxic cyanobacteria and cyanotoxins in Turkish waterbodies. J Environ Prot Ecol 18(2): 425-432.
  • Körner C (1994). Scaling from species to vegetation: the usefulness of functional groups. In: Biodiversity and ecosystem function. Heidelberg, Berlin: Springer. pp. 117-140.
  • Krammer K, Lange-Bertalot H (1986). Sußwasserflora von Mitteleuropa, Bacillariophyceae, Band 2/1, 1. Teil: Naviculaceae. Stuttgart: Gustav Fischer Verlag
  • Lenard T, Solis M (2009). Trophic diversity of three deep lakesPiaseczno, Rogóźno and Krasne-in the years 2006-2007 (LęcznaWlodawa lake district). Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego 5(6): 162-169
  • Lopez-Archilla AI, Moreira D, López-García P, Guerrero C (2004). Phytoplankton diversity and cyanobacterial dominance in a hypereutrophic shallow lake with biologically produced alkaline pH. Extremophiles 8(2): 109-115
  • Maraşlıoğlu F, Gönülol A (2014). Phytoplankton community, functional classification and trophic state indices of Yedikır Dam Lake (Amasya). Journal of Biological & Environmental Sciences 8 (24): 133.
  • OECD (1980). Eutrophication of Waters: Monitoring, Assessment and Control. Organisation for Economic Co-operation and development. Paris: 154 pp.
  • Padisák J (1997). Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv Für Hydrobiologie Supplementband Monographische Beitrage 107 (4): 563-593
  • Padisák J, Borics G, Fehér G, Grigorszky I, Oldal I et al. (2003). Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502 (1-3): 157-168.
  • Padisak J, Borics G, Grigorszky I, Soroczki-Pinter E (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553(1): 1-14.
  • Padisák J, Crossetti LO, Naselli-Flores L (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621 (1): 1-19.
  • Pasztaleniec A, Poniewozik M (2010). Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive–a comparison of approaches. Limnologica-Ecology and Management of Inland Waters 40 (3): 251-259.
  • Petar Ž, Marija GU, Koraljka KB, Anđelka PM, Judit P (2014). Morphofunctional classifications of phytoplankton assemblages of two deep karstic lakes. Hydrobiologia 740 (1): 147-166
  • Pielou EC (1966). Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology 10: 370- 383.
  • Polli B, Simona M (1992). Qualitative and quantitative aspects of the evolution of the planktonic populations in Lake Lugano. Aquatic Sciences 54 (3-4): 303-320.
  • Reynolds CS (1988). Functional morphology and the adaptive strategies of freshwater phytoplankton. In: Growth and reproductive strategies of freshwater phytoplankton. Cambridge, UK: Cambridge University Press. pp. 388-433.
  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24 (5): 417-428.
  • Salmaso N, Padisák J (2007). Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578 (1): 97- 112.
  • Salmaso N, Naselli‐Flores L, Padisak J (2015). Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60 (4): 603-619.
  • Sevindik TO, Celik K, Naselli-Flores L (2017). Spatial heterogeneity and seasonal succession of phytoplankton functional groups along the vertical gradient in a mesotrophic reservoir. In: Annales de Limnologie-International Journal of Limnology 53: 129-141
  • Schlegel I, Scheffler W (1999). Seasonal development and morphological variability of Cyclotella ocellata (Bacillariophyceae) in the eutrophic Lake Dagow (Germany). International Review of Hydrobiology 84 (5): 469-478
  • Shannon CE, Weaver W (1949). A mathematical model of communication. Vol. 3. Urbana, USA: University of illinois Press.
  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986). The PEGmodel of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106 (4): 433-471
  • Soylu EN, Gönülol A (2010). Functional classification and composition of phytoplankton in Liman Lake. Turkish Journal of Fisheries and Aquatic Sciences 10 (1): 53-60.
  • Tapolczai K, Anneville O, Padisák J, Salmaso N, Morabito G et al. (2015). Occurrence and mass development of Mougeotia spp. (Zygnemataceae) in large, deep lakes. Hydrobiologia 745 (1): 17-29.
  • Ter Braak CJF, Šmilauer P (1998) “CANOCO Reference Manual and Users Guide to Canoco for Windows: Software for Community Ordination (Version 4.0)”, Microcomputer Power Ithaca, NY, USA.
  • Ter Braak CJF, Šmilauer P (2002) “CANOCO Software for Canonical Comunity Ordination (Version 4.5)”, Biometris, Wageningen and Ceske Budejovice.
  • Utermöhl H (1958). Zur vervollkommnung der quantitativen phytoplankton-methodik: mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung für theoretische und angewandte Limnologie: Mitteilungen 9 (1): 1-38
  • Varol M (2019). Phytoplankton functional groups in a monomictic reservoir: seasonal succession, ecological preferences, and relationships with environmental variables. Environmental Science and Pollution Research 26 (20): 20439-20453.
  • Zhang NN, Zang SY (2015). Characteristics of phytoplankton distribution for assessment of water quality in the Zhalong Wetland, China. International Journal of Environmental Science and Technology 12 (11): 3657-3664.