Effect of fungicide pretreatment on lipid peroxidation, antioxidant enzyme systems and proline accumulation in tomato (Lycopersicon esculentum Mill.) leaves under high temperature stress

The aim of the present study was to determine the effect of high temperature stress (HT) and to evaluate the protective role of fungicide pretreatment against HT stress in tomato leaves. The oxidative stress was triggered under HT stress through an increase in the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2). Also, it caused a decline in photosynthetic pigments and enhanced the proline in tomato. However, the activities of catalase (CAT; EC 1.11.1.6), peroxidase (POX; EC 1.11.1.7), and glutathione S-transferase (GST; EC.2.5.1.18), as well as ascorbate-glutathione cycle enzymes (APX, EC 1.11.1.11, DHAR, EC 1.8.5.1, MDHAR EC 1.6.5.4, GR; EC 1.6.4.2) were found to be increased after heat treatment. In addition, the transcript level of LeCAT1, LeAPX1, LeAPX6, LecGR, LeDHAR genes was up-regulated under HT stress. Foliar pretreatment of fungicide improved the physiological process that decrease H2O2 and MDA content, enhance pigment content, increase proline accumulation and CAT, POX, and GST activity, as well as LeCAT1 and LeGST2 transcript levels compared to nonpretreated leaves under control temperature. When tomato leaves exposed to high temperature stress, fungicide pretreatment accelerated the antioxidant enzyme system by enhancing activities and gene expression levels of CAT, POX, GST, and ascorbate-glutathione enzyme, resulting in the decrement of MDA and H2O2 contents. Further, the protective effect of fungicide pretreatment improved the efficiency of the photosynthetic pigment under HT stress. Consequently, the study was to indicate the evidence for the ability of potential use of fungicide as a protective agent against HT stress in tomato.

___

  • Asthir B, 2015, J PLANT INTERACT, V10, P202, DOI 10.1080/17429145.2015.1067726
  • Awasthi R, 2015, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00011
  • Balestrini R, 2018, J AGR SCI-CAMBRIDGE, V156, P680, DOI 10.1017/S0021859618000126
  • BATES LS, 1973, PLANT SOIL, V39, P205, DOI 10.1007/BF00018060
  • Bergmeyer N., 1970, METHODEN ENZYMATISCH, V1, P636
  • BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • Camejo D, 2006, FUNCT PLANT BIOL, V33, P177, DOI 10.1071/FP05067
  • Dalyan E, 2018, RUSS J PLANT PHYSL+, V65, P570, DOI [10.1134/s1021443718040118, 10.1134/S1021443718040118]
  • Dikilitas M, 2019, PHOTOSYNTHESIS PRODU, P39
  • Ergin S, 2016, TURK J AGRIC FOR, V40, P908, DOI 10.3906/tar-1606-144
  • Fahad S, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01147
  • Filippou P, 2016, J EXP BOT, V67, P1259, DOI 10.1093/jxb/erv516
  • Gerszberg A, 2017, PLANT GROWTH REGUL, V83, P175, DOI 10.1007/s10725-017-0251-x
  • Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016
  • Gilley A, 1997, PLANT GROWTH REGUL, V21, P169, DOI 10.1023/A:1005804717016
  • Gonzalez-Bosch C, 2018, FREE RADICAL BIO MED, V122, P171, DOI 10.1016/j.freeradbiomed.2017.12.028
  • Habig W H, 1981, Methods Enzymol, V77, P398
  • Han SH, 2012, PLANT PATHOLOGY J, V28, P101, DOI 10.5423/PPJ.NT.11.2011.0207
  • Hayat S, 2012, PLANT SIGNAL BEHAV, V7, P1456, DOI 10.4161/psb.21949
  • HEMANTARANJAN A., 2014, ADV PLANTS AGR RES, V1, P62, DOI [10.15406/apar.2014.01.00012, DOI 10.15406/APAR.2014.01.00012]
  • HERZOG V, 1973, ANAL BIOCHEM, V55, P554, DOI 10.1016/0003-2697(73)90144-9
  • Jiang MY, 2001, PLANT CELL PHYSIOL, V42, P1265, DOI 10.1093/pcp/pce162
  • Koussevitzky S, 2008, J BIOL CHEM, V283, P34197, DOI 10.1074/jbc.M806337200
  • Lichtenthaler HK., 2001, CURRENT PROTOCOLS FO, V1, pF4.3.1, DOI 10.1002/0471142913.faf0403s01
  • Mathur S, 2014, J PHOTOCH PHOTOBIO B, V137, P116, DOI 10.1016/j.jphotobiol.2014.01.010
  • Mohsin SM, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8100428
  • Murshed R, 2008, ANAL BIOCHEM, V383, P320, DOI 10.1016/j.ab.2008.07.020
  • Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003
  • Scandalios JG, 2000, PLANT SCI, V156, P103, DOI 10.1016/S0168-9452(00)00235-1
  • Sharma P., 2012, J BOT, V2012, P1 .
  • Sheikh-Mohamadi MH, 2018, SCI HORTIC-AMSTERDAM, V242, P195, DOI 10.1016/j.scienta.2018.07.037
  • Shu DF, 2011, PLANT PHYSIOL BIOCH, V49, P1228, DOI 10.1016/j.plaphy.2011.04.005
  • Soares C, 2019, ENVIRON EXP BOT, V161, P4, DOI 10.1016/j.envexpbot.2018.12.009
  • Takahashi N, 2017, PLANT PHYSIOL BIOCH, V113, P161, DOI 10.1016/j.plaphy.2017.02.004
  • Thornton B, 2011, BIOCHEM MOL BIOL EDU, V39, P145, DOI 10.1002/bmb.20461
  • Trivedi DK, 2013, PLANT SIGNAL BEHAV, V8, DOI 10.4161/psb.23021
  • Velikova V, 2000, PLANT SCI, V151, P59, DOI 10.1016/S0168-9452(99)00197-1
  • Wu YX, 2002, ENVIRON POLLUT, V116, P37, DOI 10.1016/S0269-7491(01)00174-9
  • Yuzbasioglu E, 2019, PLANT PHYSIOL BIOCH, V135, P322, DOI 10.1016/j.plaphy.2018.12.023
  • Yuzbasioglu Elif, 2017, Trakya University Journal of Natural Sciences, V18, P97, DOI 10.23902/trkjnat.289527