Differentiation of globular phytoliths in Arecaceae and other monocotyledons: morphological description for paleobotanical application

Globular phytoliths have been mainly assigned to palms, woody trees, and other monocotyledon families from tropical regions. The lack of detailed descriptions of this phytolith morphology and its correct assignments to particular groups could lead to erroneous interpretations of phytolith records. In order to improve paleobotanical interpretations of phytoliths records, we analyzed the phytolith content and described the quantitative and qualitative characters of globular phytoliths of Arecaceae, Bromeliaceae, Cannaceae, Marantaceae, Orchidaceae, Strelitziaceae, and Zingiberaceae species from Argentina. Phytoliths were extracted by calcination and multivariate analyses were used to analyze their taxonomic relevance. Phytolith assemblages allowed the differentiation 1) among Zingiberales species; 2) among Arecaceae species; 3) between Orchidaceae, Arecaceae, and Bromeliaceae families; and 4) between Zingiberales and the rest of the groups. The study of distinguishing features of globular morphologies (such as size, roundness, reniformity, number of spines, spine length, and density of spines) allowed the discrimination between two Arecaceae subfamilies, and among Bromeliaceae, Cannaceae, and Zingiberaceae families. This work showed the importance of both analyses (phytolith assemblages and phytolith morphometric) in the identification of groups at different levels and represented the first detailed and comparative description of globular phytoliths of palms and other monocotyledons from Argentina.

Differentiation of globular phytoliths in Arecaceae and other monocotyledons: morphological description for paleobotanical application

Globular phytoliths have been mainly assigned to palms, woody trees, and other monocotyledon families from tropical regions. The lack of detailed descriptions of this phytolith morphology and its correct assignments to particular groups could lead to erroneous interpretations of phytolith records. In order to improve paleobotanical interpretations of phytoliths records, we analyzed the phytolith content and described the quantitative and qualitative characters of globular phytoliths of Arecaceae, Bromeliaceae, Cannaceae, Marantaceae, Orchidaceae, Strelitziaceae, and Zingiberaceae species from Argentina. Phytoliths were extracted by calcination and multivariate analyses were used to analyze their taxonomic relevance. Phytolith assemblages allowed the differentiation 1) among Zingiberales species; 2) among Arecaceae species; 3) between Orchidaceae, Arecaceae, and Bromeliaceae families; and 4) between Zingiberales and the rest of the groups. The study of distinguishing features of globular morphologies (such as size, roundness, reniformity, number of spines, spine length, and density of spines) allowed the discrimination between two Arecaceae subfamilies, and among Bromeliaceae, Cannaceae, and Zingiberaceae families. This work showed the importance of both analyses (phytolith assemblages and phytolith morphometric) in the identification of groups at different levels and represented the first detailed and comparative description of globular phytoliths of palms and other monocotyledons from Argentina.

___

  • Albert RM, Bamford MK, Cabanes D (2009). Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quat Int 193: 41–48.
  • Bertoldi de Pomar H (1971). Ensayo de clasificación morfológica de los silicofitolitos. Ameghiniana 8: 317–328 (in Spanish).
  • Bertoldi de Pomar H (1975). Los silicofitolitos: sinopsis de su conocimiento. Darwiniana 19: 173–206 (in Spanish).
  • Borrelli N, Osterrieth M, Cabello M (2008). A preliminary study of grass phytolith weathering through in vitro experimentation. In Korstanje MA, Babot MP, editors. Interdisciplinary nuances in phytoliths and other microfossil studies. BAR International Series S1870: Oxford, pp. 25–30 (in Spanish with an abstract in English).
  • Brilhante de Albuquerque ES, Alvarenga Braga JM, Cardoso Vieira R (2013). Morphological characterisation of silica phytoliths in Neotropical Marantaceae leaves. Plant Syst Evol 299: 1659– 1670.
  • Cabrera AL, Willink A (1973). Biogeografía de América Latina. Programa Regional de Desarrollo Científico y Tecnológico. Departamento de Asuntos Científicos. Secretaría General de la Organización de los Estados Americanos (in Spanish).
  • Campos S, del Puerto L, Inda H (2001). Opal phytolith analysis: its applications to the archaeobotanical record in Eastern Uruguay. In: Mounier J, Colin F, editors. Phytoliths: Applications in Earth Sciences and Human History. Balkema, France, pp. 129–142.
  • Exley C (2009). Silicon in life: whither biological silicification? In: Muller WEG, Grachev MA, editors. Biosilica in Evolution, Morphogenesis and Nano-biotechnology, Progress in Molecular and Subcellular Biology, Vol. 47. Berlin, Heidelberg: Springer, pp. 173–184.
  • Fahmy AG (2008). Diversity of lobate phytoliths in grass leaves from the Sahel region, West Tropical Africa: Tribe Paniceae. Plant Syst Evol 270: 1–23.
  • Fenwick R, Lentfer C, Weisler M (2011). Palm reading: a pilot study to discriminate phytoliths of four Arecaceae (Palmae) taxa. J Archaeol Sci 38: 2190–2199.
  • Fernández Honaine M, Bernava Laborde V, Zucol A (2008). Silica content in grasses from native grassland of southeastern Buenos Aires province, Argentina. In Korstanje MA, Babot MP, editors. Interdisciplinary nuances in phytoliths and other microfossil studies. BAR International Series S1870: Oxford, pp. 57–63 (in Spanish with an abstract in English).
  • Fernández Honaine M, Zucol AF, Osterrieth M (2009). Phytolith analysis of Cyperaceae from the Pampean region, Argentina. Aust J Bot 57: 512–523.
  • Gallego L, Distel RA, Camina R, Rodriguez Iglesias RM (2004). Soil phytoliths as evidence for species replacement in grazed rangelands of Central Argentina. Ecography 27: 725–732.
  • Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006). Effects, distribution and uptake of silicon in banana (Musa spp) under controlled conditions. Plant Soil, 287: 359–374.
  • Hodson MJ, White PJ, Mead A, Broadley MR (2005). Phylogenetic variation in the silicon composition of plants. Ann Bot 96: 1027–1046.
  • Kealhofer L, Piperno DR (1998). Opal Phytoliths in Southeast Asian Flora. Smithsonian Contributions to Botany, Vol. 88. Smithsonian Institution Press, Washington, DC.
  • Kress J (1990). The phylogeny and classification of the Zingiberales. Ann Missouri Bot Gard 77: 698-721.
  • Labouriau LG (1983). Phytolith work in Brazil: a minireview. The Phytolitharien Newsletter 2: 6–10.
  • Ma JF, Takahashi E (2002). Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier, Amsterdam, The Netherlands.
  • Madella M, Alexandre A, Ball T ( 2005). International code for phytolith nomenclature 1.0. Ann Bot 96: 256–260.
  • Metcalfe CR, Chalk L (1979). Anatomy of the Dicotyledons, 2nd Ed. London, UK: Oxford University Press (Clarendon).
  • Mulholland SC,  Rapp G (1992). Phytolith Systematics: an introduction. In: Rapp Jr, G, Mulholland SC, editors. Phytolith Systematics-Emerging Issues. New York, NY, USA: Plenum, pp. 1–12.
  • Ollendorf A, Mulholland SC, Rapp G (1987). Phytoliths from some Israeli sedges. Israel J Bot 36: 125–132.
  • Ollendorf AL (1992). Towards a classification scheme of sedge (Cyperaceae) phytoliths. In: Rapp Jr, G, Mulholland SC, editors. Phytolith Systematics-Emerging Issues. New York, NY, USA: Plenum, pp. 91–111.
  • Osterrieth ML, Madella M, Zurro D, Alvarez F (2009). Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quat Int 193: 70–79.
  • Osterrieth M (2004). Biominerales y Biomineralizaciones. Cristalografía de Suelos. Editado por la Sociedad Mexicana de Cristalografía, pp. 206–218 (in Spanish).
  • Parry W, Smithson F (1964). Types of opaline silica depositions in the leaves of British grasses. Ann Bot 28: 169–185.
  • Patterer NI, Fernández Pepi MG, Arriaga MO, Zucol AF (2011). Caracterización fitolítica de la vegetación del Parque Nacional El Palmar (Colón, Entre Ríos, Argentina). Primeros resultados. Bol. Soc. Argent. Bot 46: 260 (in Spanish).
  • Pearsall DM, Dinan EH (1992). Developing a phytoliths classification system. In: Rapp JrG, Mulholland SC, editors. Phytolith Systematics. New York, NY, USA: Plenum Press, pp. 37–64.
  • Piperno DR (2006). Phytoliths. A Comprehensive Guide for Archaeologists and Paleoecologists. Oxford, UK: Altamira Press.
  • Rosen AM (2005). Phytolith indicators of plant and land use at Catalhöyük. In: Hodder I, editor. Catalhöyük Project: Inhabiting Catalhöyük Vol. 4. Cambridge: McDonald Institute Monographs, pp. 203–212.
  • Runge F (1999). The opal phytolith inventory of soils in central Africa—quantities, shapes, classiŞcation, and spectra. Rev Palaeobot Palynol 107: 23–53.
  • Sandoval-Zapotitla E, Terrazas T, Villaseñor JL (2010). Diversidad de inclusions minerals en la subtribu Oncidiinae (Orchidaceae). Int J Trop Biol 58: 733–755 (in Spanish).
  • Schmitt U, Weiner G, Liese W (1995). The fine structure of the stegmata in Calamus axillaris during maturation. IAWA J 16: 61–68.
  • Tomlinson PB (1961). Anatomy of the Monocotyledons II: Palmae. London, UK: Oxford University Press.
  • Tomlinson PB (1969). Anatomy of the Monocotyledons III: Commelinales-Zingiberales. London, UK: Oxford University Press.
  • Tomlinson PB (1990). The Structural Biology of Palms. New York, NY, USA: Oxford University Press.
  • Wallis LA (2003). An overview of leaf phytolith production patterns in selected northwest Australian flora. Rev. Palaeobot Palynol 125: 201–248.
  • Zar HJ (1984). Biostatistical Analysis. 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall.
  • Zucol AF, Brea M, Scopel A (2005). First record of fossil wood and phytolith assemblages of the late pleistocene in El Palmar National Park (Argentina). J South Am Earth Sci 20: 33–43.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Unraveling the taxonomy and nomenclature of the Isoetes histrix Bory species complex (Isoetaceae, Lycopodiidae)

SIMONETTA BAGELLA, LORENZO PERUZZI, MARIA CARMELA CARIA, ROSSELLA FILIGHEDDU

A new species of Teucrium sect. Stachyobotrys (Lamiaceae) from the south of Turkey

MECİT VURAL, HAYRİ DUMAN, TUNCAY DİRMENCİ, TANER ÖZCAN

Differentiation of some myxomycetes species by ITS sequences

HAYRİ BABA, MUSTAFA KOLUKIRIK, MURAT ZÜMRE

Assessment of species diversity and state of Stipa tenacissima steppes

WAHIDA GHILOUFI, JOSE LUIS QUERO PEREZ, MIGUEL GARCIA GOMEZ, MOHAMED CHAIEB

Evaluation of molecular markers linked to fragrance and genetic diversity in Indian aromatic rice

VED PRAKASH RAI, ANIL KUMAR SINGH, HEMANT KUMAR JAISWAL, SHEO PRATAP SINGH, RAVI PRATAP SINGH, SHOWKAT AHMAD WAZA

Pollen morphology of the genus Alchemilla L. (Rosaceae) in Iran

MARZIEH BEYGOM FAGHIR, FARIDEH ATTAR, ROBABEH SHAHI SHAVVON, ATEFEH MEHRMANESH

New species of Aporomyces

WALTER ROSSI, SERGI SANTAMARIA

Ecophysiological responses of Calligonum polygonoides and Artemisia judaica plants to severe desert aridity

FAWZY SALAMA, SUZAN SAYED, AYAT ABD EL_GELIL

A new species of Teucrium sect. Scordium (Lamiaceae) from SE of Turkey

TANER ÖZCAN, TUNCAY DİRMENCİ, FATİH COŞKUN, EKREM AKÇİÇEK, ÖZAL GÜNER

Assessment of genetic diversity among 125 cultivars of chickpea (Cicer arietinum L.) of Indian origin using ISSR markers

HIMANSHU AGGARWAL, ALKA RAO, ANIL KUMAR, JASBIR SINGH, JOGENDER SINGH RANA, PRADEEP KUMAR NAIK, VINOD CHHOKAR