Changes in phenolic profile, soluble sugar, proline, and antioxidant enzyme activities of Polygonum equisetiforme in response to salinity

Changes in phenolic profile, soluble sugar, proline, and antioxidant enzyme activities of Polygonum equisetiforme in response to salinity

This study intended to focus on the effect of different levels of NaCl (0–400 mM, at regular intervals every 100 mM) on thegrowth, secondary metabolites, and antioxidant enzyme activities of Polygonum equisetiforme, a wild plant with medicinal and industrialuses, which often grows in harsh environmental conditions. Our results showed that biomass production significantly decreased withsalinity, while the leaf relative water content declined only at high levels of NaCl concentration (300–400 mM). In contrast, these higherdoses of salt resulted in a significant increase in malondialdehyde (MDA) content. Both proline and soluble sugar (e.g., fructose, glucose,and sucrose) contents were enhanced under saline conditions. The methanolic extracts of the shoots included 10 flavonoids and 9phenolic acids. The total phenolic acids (TPA), total flavonoid compounds (TFC), and total phenolic compounds (TPC) increased withsalinity, particularly at 300 mM NaCl. An increase in TPA resulted especially from an increase in quinic, gallic, and protocatechuic acids(phenolic compounds), followed by quercetin-3-O-galactoside, catechin, and epicatechin (flavonoid compounds). Superoxide dismutase(SOD) activity increased only at high salinity levels (>200 mM), while glutathione reductase (GR), guaiacol peroxidase (GPX), catalase(CAT), and ascorbate peroxidase (APX) activity increased with salinity level. A positive significant correlation between antioxidantDPPH and TPA, TFC, TPC, CAT, and APX suggests a vital protective role in controlling oxidative stress through the scavenging process.Consequently, our results indicated that P. equisetiforme shoots are rich in secondary metabolites, especially phenolic compounds withhigh potential antioxidant activities. It can be considered a salt-tolerant species able to survive at salinity levels up to 300 mM NaCl.

___

  • Abdellaoui R, Boughalleb F, Chebil Z, Mahmoudi M, Belgacem AO (2017). Physiological, anatomical and antioxidant responses to salinity in the Mediterranean pastoral grass plant Stipa lagascae. Crop and Pasture Science 68 (9): 872-884.
  • Ashraf M, Harris PJC (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16.
  • Aebi H (1984). Catalase in vitro. In: Methods in Enzymology, Vol. 105. Amsterdam: Elsevier, pp. 121-126.
  • Agati G, Azzarello E, Pollastri S, Tattini M (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science 196: 67-76. doi:10.1016/j.plantsci.2012.07.014
  • Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373-399.
  • Balasundram N, Sundram K, Samman S (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99 (1): 191- 203. doi.org/10.1016/j.foodchem.2005.07.042
  • Benzarti M, Rejeb KB, Debez A, Messedi D, Abdelly C (2012). Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiologiae Plantarum 34 (5): 1679-1688.
  • Boo H-O, Hwang S-J, Bae C-S, Park S-H, Heo B-G et al. (2012). Extraction and characterization of some natural plant pigments. Industrial Crops and Products 40: 129-135.
  • Bose J, Rodrigo-Moreno A, Shabala S (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany 65 (5): 1241-1257.
  • Boughalleb F, Abdellaoui R, Nbiba N, Mahmoudi M, Neffati M (2017). Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis. Biologia 72 (12): 1454-1466. doi:10.1515/biolog-2017-0169
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1-2): 248-254.
  • Caliskan A, Bryson JJ, Narayanan A (2017). Semantics derived automatically from language corpora contain human-like biases. Science 356 (6334): 183-186.
  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F et al. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology 35 (4): 1011-1019.
  • Chelikani P, Fita I, Loewen PC (2004). Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences 61: 92-208.
  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32 (1): 93-101.
  • Dixon RA, Paiva NL (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell 7: 1085-1097.
  • Douville V, Lodi A, Miller J, Nicolas A, Clarot I et al. (2006). Evaporative light scattering detection (ELSD): a tool for improved quality control of drug substances. Pharmeuropa Scientific Notes 1: 9-15.
  • El-Toumy S, Salib J, Shafik N, Abd Elkarim A, Micky J et al. (2017). New flavonoids from aerial parts of Polygonum equisetiforme SM (Polygonaceae). International Journal of Pharmacy and Pharmaceutical Sciences 9 (2): 166-170. doi:10.22159/ ijpps.2017v9i2.15593
  • FAO (1988). Manuel de fixation des dunes. Cahier 18 FAO Conservation. Rome: FAO.
  • Farmer EE, Mueller MJ (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annual Review of Plant Biology 64: 429-450. doi:10.1146/annurev-arplant-050312-120132
  • Foyer CH, Noctor G (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant and Cell 17 (7): 1866-1875. doi:10.1105/tpc.105.033589
  • Gamoun M (2014). Grazing intensity effects on the vegetation in desert rangelands of Southern Tunisia. Journal of Arid Land 6 (3): 324-333. doi:10.1007/s40333-013-0202-y
  • Gil-Quintana E, Larrainzar E, Seminario A, Díaz-Leal JL, Alamillo JM et al. (2013). Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. Journal of Experimental Botany 64 (8): 2171-2182.
  • Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48 (12): 909-930.
  • Hernández JA, Almansa MS (2002). Short‐term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum 115 (2): 251-257.
  • Hillar A, Nicholls P (1992). A mechanism for NADPH inhibition of catalase compound II formation. FEBS Letters 314: 179-182.
  • Hoagland DR, Arnon DI (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station 347 Circular 347: 1-32.
  • Hu M, Shi Z, Zhang Z, Zhang Y, Li H (2012). Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regulation 68 (2): 177-188.
  • Hussein S, El-Magly U, Tantawy M, Kawashty S, Saleh N (2017). Phenolics of selected species of Persicaria and Polygonum (Polygonaceae) in Egypt. Arabian Journal of Chemistry 10 (1): 76-81. doi: https://doi.org/10.1016/j.arabjc.2012.06.002
  • Kaya C, Tuna AL, Ashraf M, Altunlu H (2007). Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany 60 (3): 397-403. doi.org/10.1016/j.envexpbot.2006.12.008
  • Khafagi IK, Dewedar A (2000). The efficiency of random versus ethno-directed research in the evaluation of Sinai medicinal plants for bioactive compounds. Journal of Ethnopharmacology 71 (3): 365-376.
  • Khan M, Panda S (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaClsalinity stress. Acta Physiologiae Plantarum 30 (1): 81-89.
  • Mahmoudi M, Boughalleb F, Mabrouk M, Tlili N, Potter D, Abdellaoui R, Nasri N (2019). Chemical analysis of the antioxidants from the aerial parts of wild Polygonum equisetiforme from Tunisia. Food Bioscience 29: 24-29. doi.org/10.1016/j.fbio.2019.03.004
  • Matysik J, Alia, Bhalu B, Mohanty P (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science 82 (5): 525-532.
  • Mehlhorn H, Lelandais M, Korth H, Foyer C (1996). Ascorbate is the natural substrate for plant peroxidases. FEBS Letters 378 (3): 203-206.
  • Minh L, Khang D, Ha PTT, Tuyen PT, Minh TN et al. (2016). Effects of salinity stress on growth and phenolics of rice (Oryza sativa L.). International Letters of Natural Sciences 57: 1-10.
  • Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681. doi: 10.1146/annurev. arplant.59.032607.092911
  • Muscolo A, Sidari M, Nardi S (2013). Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration 129: 57-63.
  • Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22 (5): 867-880.
  • Narasimhulu G, Kathyvevelu Reddy K, Mohamed J (2014). The genus Polygonum (Polygonaceae): An ethnopharmacological and phytochemical perspectives. International Journal of Pharmacy and Pharmaceutical Sciences 6 (2): 21-45.
  • Parida AK, Jha B (2010). Salt tolerance mechanisms in mangroves: a review. Trees 24 (2): 199-217. doi: 10.1007/s00468-010-0417-x
  • Pulavarty A, Kukde S, Shinde VM, Sarangi BK (2015). Morphological, physiological and biochemical adaptations of Eucalyptus citriodora seedlings under NaCl stress in hydroponic conditions. Acta Physiologiae Plantarum 38 (1): 20. doi: 10.1007/s11738-015-2042-1
  • Rescigno M, Perham RN (1994). Structure of the NADPH-binding motif of glutathione reductase: efficiency determined by evolution. Biochemistry 33: 5721-5727.
  • Saed-Moucheshi A, Shekoofa A, Pessarakli M (2014). Reactive oxygen species (ROS) generation and detoxifying in plants. Journal of Plant Nutrition 37 (10): 1573-1585.
  • Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 76 (2): 270-276.
  • Schaedle M, Bassham JA (1977). Chloroplast glutathione reductase. Plant Physiology 59 (5): 1011-1012.
  • Sheikh-Mohamadi M-H, Etemadi N, Nikbakht A, Farajpour M, Arab M et al. (2017). Screening and selection of twenty Iranian wheatgrass genotypes for tolerance to salinity stress during seed germination and seedling growth stage. HortScience 52 (8): 1125-1134.
  • Singh S, Srivastava PK, Kumar D, Tripathi DK, Chauhan DK et al. (2015). Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatalysis and Agricultural Biotechnology 4 (3): 286-295.
  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany 115 (3): 433-447. doi: 10.1093/aob/mcu239
  • Takemura T, Okamoto H, Maruyama Y, Numaguti A, Higurashi A et al. (2000). Global three-dimensional simulation of aerosol optical thickness distribution of various origins. Journal of Geophysical Research Atmospheres 105 (D14): 17853-17874. doi: 10.1029/2000JD900265
  • Troll W, Lindsley J (1955). A photometric method for the determination of proline. Journal of Biological Chemistry 215 (2): 655-660.
  • Upadhyay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S et al. (2010). The intracellular drug delivery and antitumor activity of doxorubicin loaded poly (γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials 31 (10): 2882-2892.
  • Vallverdú-Queralt A, de Alvarenga JFR, Estruch R, LamuelaRaventos RM (2013). Bioactive compounds present in the Mediterranean sofrito. Food Chemistry 141 (4): 3365-3372. Zhu JK (2001). Plant salt tolerance. Trends in Plant Science 6 (2): 66-71.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Regulation of antioxidant activity in maize (Zea mays L.) by exogenous application of sulfur under saline conditions

Alia RIFFAT, Muhammad Sajid Aqeel AHMAD

Xiaoliang LU, Hongqi WU, Qiang ZHANG, Wei SUN, Xin CHEN, Xiaoting WU, Yaofeng CHEN

Russula shanglaensis sp. nov. (Basidiomycota: Russulales), a new species from the mixed coniferous forests in District Shangla, Pakistan

Gregory Michael MUELLER, Abdul Nasir KHALID, Muhammad FIAZ, Andrew William WILSON, Sadiq ULLAH, Shah HUSSAIN

Fayçal BOUGHALLEB, Raoudha ABDELLAOUI, Maher MAHMOUDI, Esmaeil BAKHSHANDEH

The endogenous L-cysteine desulfhydrase and hydrogen sulfide participate in supplemented phosphorus-induced tolerance to salinity stress in maize (Zea mays) plants

Muhammad ASHRAF, Cengiz KAYA

Ceyda ÖZFİDAN-KONAKÇI, Evren YILDIZTUGAY, Fevzi ELBASAN, Ayşegül YILDIZTUGAY, Mustafa KÜÇÜKÖDÜK

Alia RIFFAT, Muhammad Sajid Aqeel AHMAD

Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense

Oğuzhan YILMAZ, Turgut Yiğit AKYOL, Barış UZİLDAY, İsmail TÜRKAN, Rengin ÖZGÜR UZİLDAY

Sadiq ULLAH, Andrew William WILSON, Muhammad FIAZ, Shah HUSSAIN, Gregory Michael MUELLER, Abdul Nasir KHALID

Assessment of antioxidant system and enzyme/nonenzyme regulation related to ascorbate-glutathione cycle in ferulic acid-treated Triticum aestivum L. roots under boron toxicity

Ceyda ÖZFİDAN KONAKÇI, Evren YILDIZTUGAY, Ayşegül YILDIZTUGAY, Fevzi ELBASAN, Mustafa KÜÇÜKÖDÜK