Mitochondrial genome sequencing and phylogenetic analysis of Cynodon dactylon × Cynodon transvaalensis

Cynodon dactylon × Cynodon transvaalensis is one of the most important turfgrasses. Sequencing the C. dactylon × C. transvaalensis mitochondrial genome can help us learn more about its genomic composition and allow further study of the population genetics, taxonomy, and evolutionary biology of Poaceae plants and other related species. Here the C. dactylon × C. transvaalensis mitochondrial genome was sequenced using Illumina HiSeq combined with PacBio sequencing technology, and the map of the mitochondrial genome was constructed after de novo assembly and annotation. The C. dactylon × C. transvaalensis mitochondrial genome has 366,612 bp and contains 53 genes, including 31 protein-coding genes, 3 rRNA genes, and 16 tRNA genes. The result of relative synonymous codon usage (RSCU) showed an A or U preference at the third position of the codons. Thirty-three chloroplast DNA fragments were found in C. dactylon × C. transvaalensis mitochondrial DNA, ranging from 72 to 3003 bp. Phylogenetic trees built based on the chloroplast genome were congruent with the plant taxonomy and NCBI taxonomy common tree, while the phylogenetic trees built based on 9 mitochondrial genes showed some differences from the common tree.

___

  • Adams KL, Daley DO, Qiu YL, Whelan J, Palmer JD (2000). Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408 (6810): 354-357. doi: 10.1038/35042567
  • Adams KL, Qiu YL, Stoutemyer M, Palmer JD (2002). Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proceedings of the National Academy of Sciences of the United States of America 99 (15): 9905-9912. doi: 10.1073/pnas.042694899
  • Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S et al. (2007). Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 1772 (2): 1173-1192. doi: 10.1534/genetics.107.073312
  • Alverson AJ, Wei X, Rice DW, Stern DB, Barry K et al. (2010). Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Molecular Biology and Evolution 27 (6): 1436- 1448. doi: 10.1093/molbev/msq029
  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003). Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424 (6945): 197-201. doi: 10.1038/35042567
  • Bi G, Mao Y, Xing Q, Cao M (2017). Homblocks: a multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics 110 (1): 18-22. doi: 10.1016/j.ygeno.2017.08.001
  • Byng JW, Chase MW, Christenhusz MJM, Fay MF, Judd WS et al. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20. doi: 10.1111/boj.12385
  • Bulmer M (1991). The selection–mutation–drift theory of synonymous codon usage. Genetics 129 (3): 897-907.
  • Carlson JE, Kemble RJ (1985). Variable presence of the 1.94 kb mitochondrial plasmid in maize S cytoplasm and its relations hip to cytoplasmic male sterility. Plant Molecular Biology 4 (2-3): 117-123. doi: 10.1007/BF02418758
  • Goremykin VV, Salamini F, Velasco R, Viola R (2009). Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Molecular Biology and Evolution 26 (1): 99-110. doi: 10.1093/molbev/msn226
  • Gui S, Wu Z, Zhang H, Zheng Y, Zhu Z et al. (2016). The mitochondrial genome map of Nelumbo nucifera reveals ancient evolutionary features. Scientific Reports 6: 30158. doi: 10.1038/srep30158
  • Handa H (2003). The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Research 31 (20): 5907-5916. doi: 10.1093/nar/gkg795
  • Heazlewood JL, Whelan J, Millar AH (2003). The products of the mitochondrial orf25 and orfB genes are FO components in the plant F1 FO ATP synthase. FEBS Letters 540 (1-3): 201-205. doi: 10.1016/S0014-5793(03)00264-3
  • Huang SL, Wang C, Liang JS (2018). Genetic resources and genetic transformation in bermudagrass: a review. Biotechnology and Biotechnological Equipment 32 (1): 1-9. doi: 10.1080/13102818.2017.1398051
  • Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW et al. (2005). Methods for obtaining and analyzing whole chloroplast genome sequences. Methods in Enzymology 395: 348-384. doi: 10.1016/S0076-6879(05)95020-9
  • Koren S, Walenz BP, Berlin K, Miller JR, Phillippy AM (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27 (5): 722-736. doi: 10.1101/gr.215087.116
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler AV, Jermiin LS (2017). Modelfinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14 (6): 587-589. doi: 10.1038/nmeth.4285
  • Koren S, Schatz MC, Walenz BP, Martin J, Howard JT et al. (2012). Hybrid error correction and de novo assembly of singlemolecule sequencing reads. Nature Biotechnology 30 (7): 693- 700. doi: 10.1038/nbt.2280
  • Kubo N, Arimura SI (2010). Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms. DNA Research 17 (1): 1-9. doi: 10.1093/dnares/ dsp024
  • Kubo T, Newton KJ (2008). Angiosperm mitochondrial genomes and mutations. Mitochondrion 8 (1): 5-14. doi: 10.1016/j. mito.2007.10.006
  • Lagesen K, Hallin PF, Rødland E, Stærfeldt HH, Rognes T et al. (2007). RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Research 35 (9): 3100-3108. doi: 10.1093/nar/gkm160
  • Liu G, Cao D, Li S, Su A, Geng J et al. (2013). The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes. PLoS One 8(8): e69476. doi: 10.1371/journal.pone.0069476
  • Lowe TM, Chan PP (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research 44 (Web Server issue): W54-W57. doi: 10.1093/nar/ gkw413
  • Luo R, Liu B, Xie Y, Li Z, Huang W et al. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1: 18. doi: 10.1186/2047-217X-1-18
  • Ma PF, Guo ZH, Li DZ (2012). Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses. PLoS One 7 (1): e30297. doi: 10.1371/journal.pone.0030297
  • McInerney JO (1998). GCUA: general codon usage analysis. Bioinformatics 14(4): 372-373. doi: 10.1093/ bioinformatics/14.4.372
  • Millar AH, Whelan J, Soole KL, Day DA (2011). Organization and regulation of mitochondrial respiration in plants. Annual Review of Plant Biology 62 (1): 79-104. doi: 10.1146/annurevarplant-042110-103857
  • Mower J, Sloan D, Alverson A (2012). Plant mitochondrial genome diversity: the genomics revolution. In: Wendel JH (editor). Plant Genome Diversity, Vol. 1. 1st ed. Vienna, Austria: Springer, pp. 123-144.
  • Murray EE, Lotzer J, Eberle M (1989). Codon usage in plant genes. Nucleic Acids Research 17 (2): 477-498. doi: 10.1093/ nar/17.2.477
  • Nakazono M, Hirai A (1993). Identification of the entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice. Molecular and General Genetics 236 (2-3): 341-346. doi: 10.1007/BF00277131
  • Nguyen LT, Schmidt HA, Haeseler AV, Minh BQ (2014). IQTREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268-274. doi: 10.1093/molbev/msu300
  • Nikos D (2010). Circoletto: visualizing sequence similarity with Circos. Bioinformatics 26 (20): 2620-2621. doi: 10.1093/ bioinformatics/btq484
  • Norman JE, Gray MW (2001). A complex organization of the gene encoding cytochrome oxidase subunit in the mitochondrial genome of the dinoflagellate, Crypthecodinium cohnii: homologous recombination generates two different coxl open reading frames. Journal of Molecular Evolution 53 (4-5): 351- 363. doi: 10.1007/s002390010
  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G et al. (2002). The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Molecular Genetics and Genomics 268 (4): 434-445. doi: 10.1007/s00438-002-0767-1
  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M et al. (1992). Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: a primitive form of plant mitochondrial genome. Journal of Molecular Biology 223 (1): 1-7. doi: 10.1016/0022- 2836(92)90708-R
  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL et al. (2000). Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proceedings of the National Academy of Sciences of the United States of America 97 (13): 6960-6966. doi: 10.1073/ pnas.97.13.6960
  • Perrotta G, Grienenberger JM, Gualberto JM (2002). Plant mitochondrial rps2 genes code for proteins with a C-terminal extension that is processed. Plant Molecular Biology 50 (3): 523-533. doi: 10.1023/A:1019878212696
  • Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV et al. (2013). Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342 (6165): 1468-1473. doi: 10.1126/science.1246275
  • Richardson AO, Rice DW, Young GJ, Alverson AJ, Palmer JD (2013). The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biology 11: 29. doi: 10.1186/1741-7007-11-29
  • Rodríguez-Moreno L, González VM, Benjak A, Martí MC, Puigdomènech P et al. (2011). Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genomics 12 (1): 424. doi: 10.1186/1471-2164-12-424
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539-542. doi: 10.1093/sysbio/sys029
  • Siqueira SF, Dias SMG, Lejeune B, de Souza AP (2001). Marchantia polymorpha mitochondrial orf identifies transcribed sequence in angiosperm mitochondrial genome. Biochimica et Biophysica Acta 1520 (3): 203-211. doi: 10.1016/S0167- 4781(01)00273-1
  • Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE et al. (2012). Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biology 10 (1): e1001241. doi:10.1371/journal.pbio.1001241
  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004). Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Reviews Genetics 5 (2): 123-135. doi: 10.1038/nrg1271
  • Wong GKS, Wang J, Tao L, Tan J, Zhang JG et al. (2002). Compositional gradients in Gramineae genes. Genome Research 12 (6): 851- 856. doi: 10.1101/gr.189102
  • Xiong AS, Peng RH, Zhuang J, Gao F, Zhu B et al. (2008). Gene duplication and transfer events in plant mitochondria genome. Biochemical and Biophysical Research Communications 376 (1): 1-4. doi: 10.1016/j.bbrc.2008.08.116