Aquaporins as targets for stress tolerance in plants: genomic complexity and perspectives

As a multigene family, plant aquaporins function not only in water transport but also in transport of small elements that are important for vegetative and reproductive growth of plants. Increasing evidence exhibits the relevance of aquaporins to tolerance against abiotic and biotic stresses such as drought, nutrient deficiency, and herbivore attack. With the accumulation of crop genome sequencing, it is suggested that several aquaporin genes are conserved in subchromosomal locations as tandem duplicated members. In this review, we will discuss the compelling nature of aquaporins as multifunctional transport channels that are often encoded in clustered regions of genomes and relevant to stress resistance in plants.

Aquaporins as targets for stress tolerance in plants: genomic complexity and perspectives

As a multigene family, plant aquaporins function not only in water transport but also in transport of small elements that are important for vegetative and reproductive growth of plants. Increasing evidence exhibits the relevance of aquaporins to tolerance against abiotic and biotic stresses such as drought, nutrient deficiency, and herbivore attack. With the accumulation of crop genome sequencing, it is suggested that several aquaporin genes are conserved in subchromosomal locations as tandem duplicated members. In this review, we will discuss the compelling nature of aquaporins as multifunctional transport channels that are often encoded in clustered regions of genomes and relevant to stress resistance in plants.

___

  • Abascal F, Irisarri I, Zardoya R (2014). Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840: 1468–1481.
  • Agre P, Bonhivers M, Borgnia MJ (1998). The aquaporins, blueprints for cellular plumbing systems. J Biol Chem 273: 14659–14662.
  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010). Plant molecular stress responses face climate change. Trends Plant Sci 15: 664– 674.
  • Almeida-Rodriguez AM, Cooke JE, Yeh F, Zwiazek JJ (2010). Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii × balsamifera clones with different drought resistance strategies. Physiol Plantarum 140: 321–333.
  • Ariana A, Gepts P (2015). Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.). Mol Genet Genomics 290: 1771–1785.
  • Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G, RuizLozano JM (2009). Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium. Mol Plant Microbe In 22: 1169–1178.
  • Aroca R, Porcel R, Ruiz-Lozano JM (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173: 808–816.
  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011). Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66: 306–317.
  • Bienert GP, Schussler MD, Jahn TP (2008). Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33: 20–26
  • Bonfante P, Genre A (2008). Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13: 492–498.
  • Boudichevskaia A, Heckwolf M, Kaldenhoff R (2015). T-DNA insertion in aquaporin gene AtPIP1;2 generates transcription profiles reminiscent of a low CO2 response. Plant Cell Environ DOI: 10.1111/pce.12547.
  • Chaumont F, Tyerman SD (2014). Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164: 1600–1618.
  • Chrispeels MJ, Maurel C (1994). Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol 105: 9–13.
  • Cohen D, Bogeat-Triboulot MB, Vialet-Chabrand S, Merret R, Courty PE, Moretti S, Bizet F, Guilliot A, Hummel I (2013).
  • Developmental and environmental regulation of aquaporin gene expression across Populus species: divergence or redundancy? PLoS One 8(2): e55506. doi:10.1371/journal. pone.0055506.
  • Danielson JA, Johanson U (2008). Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8: 45.
  • Dooner HK, Martinez-Ferez IM (1997). Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell 9: 1633–1646.
  • Durbak AR, Phillips KA, Pike S, O’Neill MA, Mares J, Gallavotti A, Malcomber ST, Gassmann W, McSteen P (2014). Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26: 2978–2995.
  • Fedoroff NV (2012). Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338: 758–767.
  • Flagel LE, Wendel JF (2009). Gene duplication and evolutionary novelty in plants. New Phytol 183: 557–564.
  • Goldbach, HE, Wimmer, MA (2007). Boron in plants and animals: Is there a role beyond cell-wall structure? J Plant Sci Soil Nutr 170: 39–48.
  • Gupta AB, Sankararamakrishnan R (2009). Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9: 134.
  • Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH (2008). Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148: 993–1003.
  • Hartley SE, Fitt RN, McLarnon EL, Wade RN (2015). Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply. Front Plant Sci 6: 35.
  • Hawkins JS, Delgado V, Feng L, Carlise M, Dooner HK, Bennetzen JL (2014). Variation in allelic expression associated with a recombination hotspot in Zea mays. Plant J 79: 375–384.
  • Herrera M, Garvin JL (2011). Aquaporins as gas channels. Pflug Arch Eur J Phy 462: 623–630.
  • Hohmann S, Bill RM, Kayingo G, Prior BA (2000). Microbial MIP channels. Trends Microbiol 8: 33–38.
  • Hwang JH, Ellingson SR, Roberts DM (2010). Ammonia permeability of the soybean nodulin 26 channel. Febs Lett 584: 4339–4343.
  • Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck KI, Schaffner AR, Bouchez D et al. (2003).
  • Role of a single aquaporin isoform in root water uptake. Plant Cell 15: 509–522.
  • Jiang SY, Gonzalez JM, Ramachandran S (2013). Comparative genomic and transcriptomic analysis of tandemly and segmentally duplicated genes in rice. PLoS One 8: e63551.
  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126: 1358–1369.
  • Kaldenhoff R (2012). Mechanisms underlying CO2 diffusion in leaves. Curr Opin Plant Biol 15: 276–281.
  • Kaldenhoff R, Grote K, Zhu JJ, Zimmermann U (1998). Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J 14: 121–128.
  • Kaldenhoff R, Ribas-Carbo M, Sans JF, Lovisolo C, Heckwolf M, Uehlein N (2008). Aquaporins and plant water balance. Plant Cell Environ 31: 658–666.
  • Kruse E, Uehlein N, Kaldenhoff R (2006). The aquaporins. Genome Biol 7: 206.
  • Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C et al. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46: 567–572.
  • Lienard D, Durambur G, Kiefer-Meyer MC, Nogue F, MenuBouaouiche L, Charlot F, Gomord V, Lassalles JP (2008). Water transport by aquaporins in the extant plant Physcomitrella patens. Plant Physiol 146: 1207–1218.
  • Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, Carpin S, Tournaire-Roux C, Maurel C, Fumanal B et al. (2012). Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot 63: 2217–2230.
  • Luu DT, Maurel C (2005). Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28: 85–96.
  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006). A silicon transporter in rice. Nature 440: 688–691.
  • Ma JF, Yamaji N (2008). Functions and transport of silicon in plants. Cell Mol Life Sci 65: 3049–3057.
  • Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z Verdoucq L (2015). Aquaporins in plants. Physiol Rev 95: 1321–1358.
  • Maurel C, Reizer J, Schroeder JI, Chrispeels MJ (1993). The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J 12: 2241–2247.
  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008). Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59: 595–624.
  • Meyers BC, Morgante M, Michelmore RW (2002). TIR-X and TIRNBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32: 77–92.
  • Morison JI, Baker NR, Mullineaux PM, Davies WJ (2008). Improving water use in crop production. Philos T Roy Soc B 363: 639–658.
  • Nguyen MX, Moon S, Jung KH (2013). Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta 238: 669–681.
  • Opperman CH, Taylor CG, Conkling MA (1994). Root-knot nematode-directed expression of a plant root-specific gene. Science 263: 221–223.
  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010). Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 10: 142.
  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2012). Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 12: 90.
  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S et al. (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423–427.
  • Peret B, Li GW, Zhao J, Band LR, Voss U, Postaire O, Luu DT, Da Ines O, Casimiro I, Lucas M et al. (2012). Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14: 991–998.
  • Preston GM, Carroll TP, Guggino WB, Agre P (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256: 385–387.
  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002). From genome to function: the Arabidopsis aquaporins. Genome Biol 3: research0001.1–research0001.17.
  • Rizzon C, Ponger L, Gaut BS (2006). Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2: e115.
  • Rodrigues FA, Vale FX, Datnoff LE, Prabhu AS, Korndorfer GH (2003). Effect of rice growth stages and silicon on sheath blight development. Phytopathology 93: 256–261.
  • Sadok W, Sinclair TR (2010). Transpiration response of ‘slow-wilting’ and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors. J Exp Bot 61: 821–829.
  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46: 1568–1577.
  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005). A gene expression map of Arabidopsis thaliana development. Nat Genet 37: 501– 506.
  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.
  • Secchi F, Zwieniecki MA (2013). The physiological response of Populus tremula x alba leaves to the down-regulation of PIP1 aquaporin gene expression under no water stress. Front Plant Sci 4: 507.
  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002). PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14: 869–876.
  • Sinclair TR, Zwieniecki MA, Holbrook NM (2008). Low leaf hydraulic conductance associated with drought tolerance in soybean. Physiol Plantarum 132: 446–451.
  • Small RL, Wendel JF (2000). Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium). Genetics 155: 1913–1926.
  • Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP (2008). AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582: 4077–4082.
  • Soto G, Fox R, Ayub N, Alleva K, Guaimas F, Erijman EJ, Mazzella A, Amodeo G, Muschietti J (2010). TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J 64: 1038–1047.
  • Takano J, Miwa K Fujiwara T, 2008. Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13: 451–457.
  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006). The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18: 1498–1509.
  • Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H, Naito S, Fujiwara T (2011). Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis. Plant Cell 23: 3547–3559.
  • Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012). The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ 35: 1077–1083.
  • Van Bockhaven J, De Vleesschauwer D, Hofte M (2013). Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64: 1281–1293.
  • Wendel JF, Cronn RC (2003). Polyploidy and the evolutionary history of cotton. Adv Agron 78: 139–186.
  • Wudick MM, Luu DT, Maurel C (2009). A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184: 289–302.
  • Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M (2015). Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8: 722–733.
  • Yamaji N, Mitatni N, Ma JF (2008). A transporter regulating silicon distribution in rice shoots. Plant Cell 20: 1381–1389.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Ameliorative role of β-estradiol against lead-induced oxidative stress and genotoxic damage in germinating wheat seedlings

Mucip GENİŞEL, Yavuz DEMİR, İrfan TERZİ, Serkan ERDAL, Ebru GENÇ, Hülya TÜRK

Metabolic and molecular-genetic regulation of proline signaling and itscross-talk with major effectors mediates abiotic stress tolerance in plants

ARYADEEP ROYCHOUDHURY, ADITYA BANERJEE, VIKRAMJIT LAHIRI

Characterizing the expression of genes involved in iron transport inPakistani peanut varieties under iron deficiency stress

Shamim AKHTAR, Yusuke KAKEI, Khurrum BASHIR, Armghan SHAHZAD, Takashi YAMAKAWA, Muhammad ARSHAD, Fayyaz- UL-HASSAN, Hiromi NAKANISHI, Naoko K. NISHIZAWA

Application of data analysis in cold stress: a case study of Nicotiana benthamiana

İbrahim KOÇ, Zihni Onur ÇALIŞKANER, Ertuğrul FİLİZ

Soil bacteria conferred a positive relationship and improved salt stress tolerance in transgenic pea (Pisum sativum L.) harboring Na+/H+ antiporter

Zahid ALI, Nasr ULLAH, Saadia NASEEM, Muhammad İnam Ul HAQ, Hans Joerg JACOBSEN

Ameliorative role of ß-estradiol against lead-induced oxidative stressand genotoxic damage in germinating wheat seedlings

Mucip GENİŞEL, Hülya TÜRK, Serkan ERDAL, Yavuz DEMİR, Ebru GENÇ, İrfan TERZİ

Activated expression of EsHD1 enhances drought tolerance in tobacco plants via mitigation of reactive oxygen species-mediated membrane damage

Cheng ZHOU, Zhongyou MA, Lin ZHU, Jiansheng GUO, Xianghuan CUI, Jian ZHU, Jianfei WANG

Recent advances in potato genomics, transcriptomics, and transgenicsunder drought and heat stresses: a review

Emre AKSOY, Ufuk DEMİREL, Zahide Neslihan ÖZTÜRK, Sevgi ÇALIŞKAN, Mehmet Emin ÇALIŞKAN

Identification of bacterial leaf blight resistance genes in wild rice of eastern India

Anil Kumar SINGH, Ekta DHARMRAJ, Rohini NAYAK, Pawan Kumar SINGH, Nagendra Kumar SINGH

Screening of PvLEA3 gene mRNA expression levels with qRT-PCR in differentbean varieties (Phaseolus vulgaris L.) subjected to salt and drought stress

İlker BÜYÜK, Sümer ARAS